Multi-Key Fully-Homomorphic Aggregate MAC
for Arithmetic Circuits

Suvasree Biswas and Arkady Yerukhimovich

George Washington University

Outline

Motivating Application

Tools Used

Why Are These Tools Not Enough ?
Syntax

Security Definition

Construction

Summary

Nounh,oNER

Motivating Application: Sensor Network

f

f 2 Scientist Jerry
Cloud Tom

/3

Sensor Mice

Motivating Application: Sensor Network

f

f 2 Scientist Jerry

Cloud Tom

i fi(D;)

/3

Sensor Mice 4

Motivating Application: Sensor Network

Sensor Mice

Cloud Tom

fl Dl
f2 Do
J3 Ds

Scientist Jerry

i fi(D;)

Motivating Application: Sensor Network Gennaro12

Scientist Jerry

Cloud Tom

Sensor Mice

Motivating Application: Sensor Network Gennaro12

Sensor Data

6 Scientist Jerry

Cloud Tom

Sensor Mice

Motivating Application: Sensor Network Gennaro12

Result of computation

Proof of correctness of
computation

Scientist Jerry

Cloud Tom

Sensor Mice

Motivating Application: Sensor Network Gennaro12

Scientist Jerry

Cloud Tom

Efficiency: proof size independent of function size and number of clients.

Security: Tom cannot corrupt computation on honest clients’ inputs, even if he colluded
Sensor Mice with some of the clients. 9

Outline

Motivating Application

Tools Used

Why Are These Tools Not Enough ?
Syntax

Security Definition

Construction

. Summary

NounprODNE

10

First Tool: Homomorphic Authenticators Gennaroiz

Authenticated (ma P, U)

Dataset

Sensor Mouse Cloud Tom Scientist Jerry
(with sk) (with ek) (with sk)
Compute P(D)

e Tagsize is independent of function depth and size
e Jerry's Verification is independent of Mouse’s dataset

11

Second Tool : Aggregate Signatures Eonehis

%
o
Cloud Tom Scientist Jerry
. with (pk, pk,, pks)
Compute Ez- o; 0} with (m1, ma, m3)

as

0¥ < o1+ ...+ |on]

(with sks, pks)
Sensor Mice 12

Outline

Motivating Application

Tools Used

Why Are These Tools Not Enough ?
Syntax

Security Definition

Construction

. Summary

NouawNe

13

From Homomorphic Authenticators:

Auth Eval

Sensor Mouse Cloud Tom

Keygen

Scientist Jerry

14

From Aggregate Signatures:

Cloud Tom

eTag size is independent of the number of parties
eAggregation of dynamic subset of parties

Sensor Mice

Scientist Jerry

15

Our Requirement

Cloud Tom

e Tagsizeis independent of the number of parties

e Aggregation of dynamic subset of parties

Sensor Mice

Scientist Jerry

16

Outline

Motivating Application

Tools Used

Why Are These Tools Not Enough ?
Syntax

Security Definition

Construction

. Summary

NounhsrLONME

17

Arithmetic Circuit

18

Arithmetic Circuit

19

Arithmetic Circuit

20

Arithmetic Circuit

Pout — (’LMB + Uy)g 1

21

Arithmetic Circuit

Pout — (UI + Uy)g 1

Circuit is a Program

22

Syntax

KeyGen

24

Syntax

m h — | Auth

» B B -

Syntax

m h — | Auth

» B B -

P kG o

oo

/| x

Syntax

m h — | Auth

r @@=

- P> P

= P

~ o m

—~Bmn nmr P Q) omem—E=

o

oo-

/| x

—UB

) -3 3 P @ o= 00
m @ — [g 1 B =G
r@@e - -Bm nmnp P eeee U

 AegregationCorectness.
Pr|AggVer ((ski, mi, Pi)vicv,0%) =1 =1 .

Syntax Summary

Sensor Mice

3. Eval

Cloud Tom

4. Aggregate

Scientist Jerry

5. AggVer

29

Outline

Motivating Application

Tools Used

Why Are These Tools Not Enough ?
Syntax

Security Definition

Construction

. Summary

NouhsoNR

30

Unforgeability

/

(Challenger)

(Adversary)

31

Unforgeability &Y

(Challenger)

Step 1: Initialize
Create (ek, sk) for all parties

(Adversary)

»
»

32

Unforgeability \._./

(Challenger)

Step 1: Initialize
Create (ek, sk) for all parties

Step 2: Auth(t, m)
Return o under sk,

(Adversary)

33

Unforgeability K

(Challenger)

Step 1: Initialize
Create (ek, sk) for all parties

Step 2: Auth(t, m)
Return o under sk;

Step 3: ver(m, Po) under sk,
Return 0/1

Step 4: AggVer((m',P’), o)
Including P,
Return 0/1

(Adversary)

34

Unforgeability e

(Challenger)

Step 1: Initialize
Create (ek, sk) for all parties

Step 2: Auth(t, m)
Return o under sk;

Step 3: ver(m, Po) under sk,
Return 0/1

Step 4: AggVer((m',P’), o)
Including P,
Return 0/1

Step 5: Finalise

Run AggVer((m*,P*)y, o)
Including P,

Return 0/1

a

(Adversary)

35

Unforgeability 0o

e Type 1Forgery
e Type 2 Forgery

\/

(Challenger)

Step 5: Finalise

Run AggVer((m*,P*)y, o)
Including P,

Return 0/1

a

(Adversary)

36

Security Summary

Sensor Mice

Cloud Tom

Scientist Jerry

37

Security Summary

Sensor Mice

Cloud Tom

Scientist Jerry

38

Outline

Motivating Application

Tools Used

Why Are These Tools Not Enough ?
Syntax

Security Definition

Construction

. Summary

NouhwN e

39

Can polynomials give a MAC ?Ec13

m

7-

1

®

40

Can polynomials give a MAC ?Ec13

m

7-

(0,m)

1

®

O (35'077"7)

41

Can polynomials give a MAC ?F€13

m

T

(0,m)

1

(SU(), TT)

42

Can polynomials give a MAC ?F€13

m

T

1

43

Can polynomials give a MAC ?F€13

m

T

1

44

Correctness: FC€i3

o' = (yb, Y1), m

/

_/

>

Verification:
Under xo

]
Yo = M

Yo + Y1 To=Tr

45

I) 6, FA
Can polynomials give a Homomorphic MAC ? ECi3,FE16,FA24

Yy =C+ax y € Zp|x]

46

Can polynomials give a Homomorphic MAC ? ECi3,FE16,FA24

P, () =c1+a1-x

P, (r) =co+as-x

Yy =C+ax y € Zp|x]

47

Can polynomials give a Homomorphic MAC ? ECi3,FE16,FA24

/® /®\

P’inl (‘T) Pinz (33) Pinl («’17) Py, (37)
P, () =c1+a1-x

P, (r) =co+as-x

Yy =C+ax y € Zp|x]

48

I ? FCi3,FE16, FA24
lynomials give a Homomorphic MAC
Can poly

Pout(x)

= Pml(x) + Pinz (.’13)
=(c1+a1-x)+ (ca+as-x)
= (e1 + ¢c2) + (a1 + a2)x

AN

) Pinz (33)
Pzn1 (513) P?:nl (x) et a

P, (r) =co+as-x

Yy=c+ar ye< Zpz]

Visualization for additive homomorphism

Poui(z)

= Pin, (7) + Pin,(z)

=(c1+a1-x)+ (co+as-x)
= (e +C2)+(+ ag)x

/\

'L’I’Ll Z’I’Lg

50

Can polynomials give a Homomorphic MAC ? ECi3,FE16,FA24

P,ui(x)

= Pin, (z) - Pin, ()
=(a1-z+c1)+ (a2 -z +c2)
= (c1-c2) + (ay - Cz):c+(a2 1)z + (a1 - az)z?

'ml ’l'ng

g

in1 () =c1+a;-x

’m2($) — C2 T a2 T

g

Yy =C+ax y € Zp|x] .

Visualization for multiplicative homomorphism
Pout (ZU)
= Pin, (7) - Pin, ()
= (a1 -x+c1)+ (ag -+ c2)
= (c1-c2) + (02)33+(a2 c)x + (a1 - ag)x?

'ml ’l'nz

Y=C+ ar vy € Zp|z] .

Unravelling Multiplication

Zo

Poyi(x) = mq - mo + mo (Tfl_ml).m—l—ml.(rr”

Correctness of Homomorphic MACEC13

o = (Y}, ...

,Yy), m/

>

Verification :
Under X

/I /
Yo = m

d
Zkzoy;c | Sl?g — f(Tle .

Can Polynomials give Multi Key Homomorphic Aggregate MAC ?
Naive Attempt: A Succinct Homomorphic MAC

ekl,Skl,ml, Al
eky, sky, T, Ag Aq||Az]] ... || Ay

ek, skju, mu|, Ao

Issue: Efficiency
55

Can Polynomials give Multi Key Homomorphic Aggregate MAC ?
Attempt 2: A Succinct Homomorphic MAC

eklaskla mai, Al

ekz,Skg,mz,Ag A1+A2+—|—A|U|

ek, skju, mu|, Ao

Issue: Privacy
56

Can Polynomials give Multi Key Homomorphic Aggregate MAC ?

Attempt 3: A Succinct Homomorphic MAC
‘H Hash Function

ekla Skla mlaAla H(ml)

ek29 SkZa ma, AZ: %(mz)

0" =Xiey H(my) - A

ek|U|5Sk|U|5m|U|aA|U|,%(m|U|) (InformaIIY)

57

Correctness

o _/

*
O-’ml’---’m|U|

>

Verification(Informal) : check

veey

0" = Xieu ski-H(m7) - fulrr, 5o 77 ,) + Zieu sk - H(my) - my

58

Intuition for the Proof

Theorem 1. (Informal) If co-CDH is (t',€') hard over groups (G,,G2) and PRF
is secure, then HA-MAC scheme is (t,Q,€) secure in the random oracle model
for all t, e satisfying

e<§+e' and t > t'

where QQ is the number of queries and A\ is the security parameter.

The proof relies loosely on a variant of Schwartz Zippel22 and a reduction to co-CDHEB13 3ssumption
through a series of hybrids and is secure in the Random Oracle Model.

59

Outline

Motivating Application

Tools Used

Why Are These Tools Not Enough ?
Syntax

Security Definition

Construction

. Summary

NouhswN e

60

Summary

Scientist Jerry

Cloud Tom

e Our primitive enables an untrusted server to produce a short certificate to prove
that he has performed correct (disjoint) computations on multiple users’ data.
e The size of this proof is independent of the number of users and the complexity of

the performed computations.
e \We give a construction of this primitive based on the co-CDH assumption in the

Sensor Mice random oracle model ‘o

Open Problems:

® Remove ROM
® Independence of Verification from the complexity of function
® Independence of the size of keys from the depth of the function.

62

Thank You!

References:

Catalano, D., & Fiore, D. (2013, May). Practical homomorphic MACs for arithmetic circuits. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques (pp. 336-352). Berlin, Heidelberg: Springer Berlin Heidelberg.

Gennaro, R., & Wichs, D. (2013, December). Fully homomorphic message authenticators. In International Conference on the Theory and
Application of Cryptology and Information Security (pp. 301-320). Berlin, Heidelberg: Springer Berlin Heidelberg.

Boneh, D., Gentry, C., Lynn, B., & Shacham, H. (2003). Aggregate and verifiably encrypted signatures from bilinear maps. In Advances in
Cryptology—EUROCRYPT 2003: International Conference on the Theory and Applications of Cryptographic Techniques, Warsaw, Poland,
May 4-8, 2003 Proceedings 22 (pp. 416-432). Springer Berlin Heidelberg.

Fiore, D., Mitrokotsa, A., Nizzardo, L., & Pagnin, E. (2016, November). Multi-key homomorphic authenticators. In International conference
on the theory and application of cryptology and information security (pp. 499-530). Berlin, Heidelberg: Springer Berlin Heidelberg.
Anthoine, G., Balbas, D., & Fiore, D. (2024, August). Fully-succinct multi-key homomorphic signatures from standard assumptions. In
Annual International Cryptology Conference(pp. 317-351). Cham: Springer Nature Switzerland.

Zippel, R. (1979, June). Probabilistic algorithms for sparse polynomials. In International symposium on symbolic and algebraic manipulation
(pp. 216-226). Berlin, Heidelberg: Springer Berlin Heidelberg.

64

	Slide 1: Multi-Key Fully-Homomorphic Aggregate MAC for Arithmetic Circuits
	Slide 2: Outline
	Slide 3: Motivating Application: Sensor Network
	Slide 4: Motivating Application: Sensor Network
	Slide 5: Motivating Application: Sensor Network
	Slide 6: Motivating Application: Sensor Network Gennaro12
	Slide 7: Motivating Application: Sensor Network Gennaro12
	Slide 8: Motivating Application: Sensor Network Gennaro12
	Slide 9: Motivating Application: Sensor Network Gennaro12
	Slide 10: Outline
	Slide 11: First Tool: Homomorphic Authenticators Gennaro12
	Slide 12: Second Tool : Aggregate Signatures Boneh13
	Slide 13: Outline
	Slide 14: From Homomorphic Authenticators:
	Slide 15: From Aggregate Signatures:
	Slide 16: Our Requirement
	Slide 17: Outline
	Slide 18: Arithmetic Circuit
	Slide 19: Arithmetic Circuit
	Slide 20: Arithmetic Circuit
	Slide 21: Arithmetic Circuit
	Slide 22: Arithmetic Circuit
	Slide 23: Syntax
	Slide 24: Syntax
	Slide 25: Syntax
	Slide 26: Syntax
	Slide 27: Syntax
	Slide 28: Syntax
	Slide 29: Syntax Summary
	Slide 30: Outline
	Slide 31: Unforgeability
	Slide 32: Unforgeability
	Slide 33: Unforgeability
	Slide 34: Unforgeability
	Slide 35: Unforgeability
	Slide 36: Unforgeability
	Slide 37: Security Summary
	Slide 38: Security Summary
	Slide 39: Outline
	Slide 40: Can polynomials give a MAC ?FC13
	Slide 41: Can polynomials give a MAC ?FC13
	Slide 42: Can polynomials give a MAC ?FC13
	Slide 43: Can polynomials give a MAC ?FC13
	Slide 44: Can polynomials give a MAC ?FC13
	Slide 45: Correctness: FC13
	Slide 46: Can polynomials give a Homomorphic MAC ? FC13, FE16, FA24
	Slide 47: Can polynomials give a Homomorphic MAC ? FC13, FE16, FA24
	Slide 48: Can polynomials give a Homomorphic MAC ? FC13, FE16, FA24
	Slide 49: Can polynomials give a Homomorphic MAC ? FC13, FE16, FA24
	Slide 50: Visualization for additive homomorphism
	Slide 51: Can polynomials give a Homomorphic MAC ? FC13, FE16, FA24
	Slide 52: Visualization for multiplicative homomorphism
	Slide 53: Unravelling Multiplication
	Slide 54: Correctness of Homomorphic MACFC13
	Slide 55: Can Polynomials give Multi Key Homomorphic Aggregate MAC ?
	Slide 56: Can Polynomials give Multi Key Homomorphic Aggregate MAC ?
	Slide 57: Can Polynomials give Multi Key Homomorphic Aggregate MAC ?
	Slide 58: Correctness
	Slide 59: Intuition for the Proof
	Slide 60: Outline
	Slide 61: Summary
	Slide 62: Open Problems:
	Slide 63: Thank You!
	Slide 64: References:

