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Motivating Application: Sensor Network Gennaro12
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Motivating Application: Sensor Network Gennaro12
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Motivating Application: Sensor Network Gennaro12

Scientist Jerry

Cloud Tom

Efficiency: proof size independent of function size and number of clients.

Security: Tom cannot corrupt computation on honest clients’ inputs, even if he colluded
Sensor Mice with some of the clients. 9
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First Tool: Homomorphic Authenticators Gennaroiz

Authenticated (ma P, U)

Dataset

Sensor Mouse Cloud Tom Scientist Jerry
(with sk) (with ek) (with sk)
Compute P(D)

e Tagsize is independent of function depth and size
e Jerry's Verification is independent of Mouse’s dataset
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Second Tool : Aggregate Signatures Eonehis

%
o
Cloud Tom Scientist Jerry
. with ( pk, pk,, pks)
Compute Ez- o; 0} with (m1, ma, m3)

as

0¥ < o1+ ...+ |on]

(with sks, pks)
Sensor Mice 12
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From Homomorphic Authenticators:

Auth Eval

Sensor Mouse Cloud Tom

Keygen

Scientist Jerry

14



From Aggregate Signatures:

Cloud Tom

eTag size is independent of the number of parties
eAggregation of dynamic subset of parties

Sensor Mice

Scientist Jerry
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Our Requirement

Cloud Tom

e Tagsizeis independent of the number of parties

e Aggregation of dynamic subset of parties

Sensor Mice

Scientist Jerry
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Arithmetic Circuit
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Arithmetic Circuit
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Arithmetic Circuit
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Arithmetic Circuit

Pout — (’LMB + Uy)g 1
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Arithmetic Circuit

Pout — (UI + Uy)g 1

Circuit is a Program
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Syntax
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Syntax

m h — | Auth
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Syntax Summary

Sensor Mice

3. Eval

Cloud Tom

4. Aggregate

Scientist Jerry

5. AggVer
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Unforgeability

/

(Challenger)

(Adversary)
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Unforgeability &Y

(Challenger)

Step 1: Initialize
Create (ek, sk) for all parties

(Adversary)

»
»
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Unforgeability \._./

(Challenger)

Step 1: Initialize
Create (ek, sk) for all parties

Step 2: Auth(t, m)
Return o under sk,

(Adversary)
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Unforgeability K

(Challenger)

Step 1: Initialize
Create (ek, sk) for all parties

Step 2: Auth(t, m)
Return o under sk;

Step 3: ver(m, Po ) under sk,
Return 0/1

Step 4: AggVer( (m',P’ ), o)
Including P,
Return 0/1

(Adversary)
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Unforgeability e

(Challenger)

Step 1: Initialize
Create (ek, sk) for all parties

Step 2: Auth(t, m)
Return o under sk;

Step 3: ver(m, Po ) under sk,
Return 0/1

Step 4: AggVer( (m',P’ ), o)
Including P,
Return 0/1

Step 5: Finalise

Run AggVer( (m*,P* )y, o)
Including P,

Return 0/1

a

(Adversary)
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Unforgeability 0o

e Type 1Forgery
e Type 2 Forgery

\/

(Challenger)

Step 5: Finalise

Run AggVer( (m*,P* )y, o)
Including P,

Return 0/1

a

(Adversary)
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Can polynomials give a MAC ?Ec13
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Can polynomials give a MAC ?Ec13
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Can polynomials give a MAC ?F€13

m
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(0,m)
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Can polynomials give a MAC ?F€13
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Can polynomials give a MAC ?F€13
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Correctness: FC€i3

o' = (yb, Y1), m

/

\_/

>

Verification:
Under xo

]
Yo = M

Yo + Y1 To=Tr
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I ) 6, FA
Can polynomials give a Homomorphic MAC ? ECi3,FE16,FA24

Yy =C+ax y € Zp|x]
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Can polynomials give a Homomorphic MAC ? ECi3,FE16,FA24

P, () =c1+a1-x

P, (r) =co+as-x

Yy =C+ax y € Zp|x]
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Can polynomials give a Homomorphic MAC ? ECi3,FE16,FA24

/® /®\

P’inl (‘T) Pinz (33) Pinl («’17) Py, (37)
P, () =c1+a1-x

P, (r) =co+as-x

Yy =C+ax y € Zp|x]
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I ? FCi3,FE16, FA24
lynomials give a Homomorphic MAC
Can poly

Pout(x)

= Pml(x) + Pinz (.’13)
=(c1+a1-x)+ (ca+as-x)
= (e1 + ¢c2) + (a1 + a2)x

AN

) Pinz (33)
Pzn1 (513) P?:nl (x) et a

P, (r) =co+as-x

Yy=c+ar ye< Zpz]



Visualization for additive homomorphism

Poui(z)

= Pin, (7) + Pin,(z)

=(c1+a1-x)+ (co+as-x)
= (e +C2)+( + ag)x

/\

'L’I’Ll Z’I’Lg
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Can polynomials give a Homomorphic MAC ? ECi3,FE16,FA24

P,ui(x)

= Pin, (z) - Pin, ()
=(a1-z+c1)+ (a2 -z +c2)
= (c1-c2) + (ay - Cz):c+(a2 1)z + (a1 - az)z?

'ml ’l'ng

g

in1 () =c1+a;-x

’m2($) — C2 T a2 T

g

Yy =C+ax y € Zp|x] .



Visualization for multiplicative homomorphism
Pout (ZU)
= Pin, (7) - Pin, ()
= (a1 -x+c1)+ (ag -+ c2)
= (c1-c2) + ( 02)33+(a2 c)x + (a1 - ag)x?

'ml ’l'nz

Y=C+ ar vy € Zp|z] .



Unravelling Multiplication

Zo

Poyi(x) = mq - mo + mo (Tfl_ml).m—l—ml.(rr”




Correctness of Homomorphic MACEC13

o = (Y}, ...

,Yy), m/

>

Verification :
Under X

/I /
Yo = m

d
Zkzoy;c | Sl?g — f(Tle .



Can Polynomials give Multi Key Homomorphic Aggregate MAC ?
Naive Attempt: A Succinct Homomorphic MAC

ekl,Skl,ml, Al
eky, sky, T, Ag Aq||Az]] ... || Ay

ek, skju, mu|, Ao

Issue: Efficiency
55



Can Polynomials give Multi Key Homomorphic Aggregate MAC ?
Attempt 2: A Succinct Homomorphic MAC

eklaskla mai, Al

ekz,Skg,mz,Ag A1+A2+—|—A|U|

ek, skju, mu|, Ao

Issue: Privacy
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Can Polynomials give Multi Key Homomorphic Aggregate MAC ?

Attempt 3: A Succinct Homomorphic MAC
‘H Hash Function

ekla Skla mlaAla H(ml)

ek29 SkZa ma, AZ: %(mz)

0" =Xiey H(my) - A

ek|U|5Sk|U|5m|U|aA|U|,%(m|U|) (InformaIIY)
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Correctness

o \_/

*
O-’ml’---’m|U|

>

Verification(Informal) : check

veey

0" = Xieu ski-H(m7) - fulrr, 5o 77 ,) + Zieu sk - H(my) - my
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Intuition for the Proof

Theorem 1. (Informal) If co-CDH is (t',€') hard over groups (G,,G2) and PRF
is secure, then HA-MAC scheme is (t,Q,€) secure in the random oracle model
for all t, e satisfying

e<§+e' and t > t'

where QQ is the number of queries and A\ is the security parameter.

The proof relies loosely on a variant of Schwartz Zippel22 and a reduction to co-CDHEB13 3ssumption
through a series of hybrids and is secure in the Random Oracle Model.
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Summary

Scientist Jerry

Cloud Tom

e Our primitive enables an untrusted server to produce a short certificate to prove
that he has performed correct (disjoint) computations on multiple users’ data.
e The size of this proof is independent of the number of users and the complexity of

the performed computations.
e \We give a construction of this primitive based on the co-CDH assumption in the

Sensor Mice random oracle model ‘o




Open Problems:

® Remove ROM
® Independence of Verification from the complexity of function
® Independence of the size of keys from the depth of the function.

62



Thank You!
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