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1.1 The design of block ciphers

The design of block ciphers

• Confusion: Non-linear components (e.g. S-box)

• Diffusion:   Linear components (e.g. MDS matrix)

• Cipher structure: Feistel structure, SP network, 

Lai-Massey structure, Generalized Feistel structure

DES

IDEA

AES

FOX
Camellia 

 

… 
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1.2 Comparison between Feistel structure and Lai-Massey structure

Comparison Feistel structure Lai-Massey structure

Similarities

Two equal-sized branches.                                                             

The f-function may not necessarily be invertible.

CPA security: 3 rounds

CCA security: 4 rounds

Differences

Design

The input and output of f-

function are related to 

only one branch.

The input and output of f-

function are related to two 

branches.

Branch permutation Orthomorphic permutation

Distinguishers 5-round impossible 

differentials

FOX block cipher: 4-round 

impossible differentials

Observation: There is always longer impossible differentials for block ciphers 

when considering the details of f-functions. 
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1.3 Several questions

Question 1: The number of rounds of impossible differentials for Lai-

Massey structure may be limited to 4 rounds. From the perspective of 

design, what factors influence the number of rounds of distinguishers?

Question 2: Can we reconsider the differences in distinguishers and 

provable security between Feistel and Lai Massey structures from a unified 

framework?  

DCC 2011 Quasi-Feistel construction: consistency between Feistel and 

Lai-Massey constructions regarding CPA and CCA security results;   

TIT 2023 Unified structure: Feistel-like structures with a single f-function.
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2.1 Lai-Massey structure and its another representation
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2.2 The r-round iteration of Lai-Massey structure
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2.3 Lai-Massey structure and its equivalent structure

The differences between the Lai-Massey and Feistel structures in design and security are 

attributed to different properties of orthomorphic permutation and branch permutation.
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2.4 The properties of orthomorphic permutation 

Definition 1: Let (G, +) be a finite abelian group and 𝜎: G ↦ G be a mapping from G to G.  If 𝜎 and 

𝑥 ↦ 𝜎(𝑥) − 𝑥 are both permutations, then 𝜎 is called an orthomorphic permutation.

Set G as 𝐹2
𝑛, the group operation as ⊕, and the mapping 𝜎 as a linear orthomorphic permutation. 

Property 1: For a linear orthomorphic permutation 𝜎 , we have ord(𝜎) ≥ 3.

The order of branch permutation is 2, while the order of an orthomorphic permutation is at least 3. 

Property 2: The linear mapping 𝑥 ↦ 𝜎2 𝑥 ⊕ 𝑥 is a permutation.
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2.5 Conjugated equivalence 

Definition 2: Suppose 𝑀, 𝑁 are 𝑛 × 𝑛 invertible matrices  over 𝐹2, if there exists an 𝑛 × 𝑛 invertible 

matrix 𝑃 over 𝐹2 , such that 𝑃−1𝑀𝑃 = 𝑁, then matrix 𝑀 is said to be conjugated equivalent to 𝑁, 

denoted as 𝑀 ∼ 𝑁.

Property 3: Suppose 𝑀, 𝑁 are 𝑛 × 𝑛 invertible matrices  over 𝐹2 , if 𝑀 is conjugated equivalent to 𝑁, 

then ord(𝑀) = ord(𝑁). 
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2.6 Examples 

Example 2: For a linear orthomorphic permutation 𝜎,

ord(𝜎) = ord(𝜎′).

Example 3:  As shown in Example 1, there are three equivalence classes:

{𝑀1}, {𝑀2, 𝑀3, 𝑀4}, {𝑀5, 𝑀6}.

Example 1: There are six 2 × 2 invertible matrices over 𝐹2.

Matrices 𝑀5 and 𝑀6 are orthomorphic permutations. 

Other matrices are not orthomorphic permutations.

ord(𝑀5) = ord(𝑀6) = 3,

ord(𝑀2) = ord(𝑀3)  = ord(𝑀4) = 2,

ord(𝑀1) = 1.
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3.1 The framework UFLM 

The framework UFLM is a collection of cipher structures, including Feistel and Lai-Massey structures.

UFLM instance:  𝒰𝜑 = 𝐸𝑓,𝜑 𝑓: 𝐹2
𝑛 ↦ 𝐹2

𝑛}. 𝐸𝑓,𝜑 is a single-round 

block cipher employing the instance 𝒰𝜑. 

If 𝜑 is branch permutation, then the instance is Feistel structure.     

If 𝜑 = 𝜎′, then the instance is equivalent Lai-Massey structure.

UFLM construction:  𝒰ℱℒℳ = 𝒰𝜑 𝜑: 𝐹2
2𝑛 ↦ 𝐹2

2𝑛}.

r-round UFLM instance 𝒰𝜑
(𝑟)

(construction 𝒰ℱℒℳ(𝑟)):  the r-fold 

composition of 𝒰𝜑 (𝒰ℱℒℳ)

The f-functions adopted in each round are considered as (secret) 

random functions.
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3.2 Research object

Property 4: If 𝒜(2) is full-rank, then there exists at least one differentially active f-function covering 

two consecutive rounds for UFLM instances.

Property 5: If ℬ(2) is full-rank, then there exists at least one linearly active f-function covering two 

consecutive rounds for UFLM instances.

Research object: UFLM instances that satisfy the following conditions: 

(1) bijective f-function;  (2) 𝒜(2) and ℬ(2) are full-rank;  (3) ord(𝜑) ≥ 2.    
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3.3 5-round impossible differential 

Theorem 1: Assume that 𝒜(2) and ℬ(2) are full-rank. There exists a 5-round impossible differential 

𝛼 → 𝜑𝛼 for UFLM instances where 𝛼 is a non-zero solution for equation 𝒜(1)𝑥 = 0 and ord(𝜑) = 2.

𝛼 → 𝜑𝛼 → 𝛼 ⊕ 𝜑𝐵T𝛽1 → 𝜑𝛼 ⊕ 𝐵T𝛽1 ⊕ 𝜑𝐵T𝛽2

Contradiction!

𝑓1: 0 → 0

𝑓2: 𝐴𝜑𝛼 → 𝛽1

𝑓3: 𝐴𝜑𝐵T𝛽1 → 𝛽2

𝑓4: 𝐴𝜑𝛼 → 𝛽3

Decryption direction:

𝜑𝛼 ⊕ 𝐵T𝛽3 ← 𝛼 ← 𝜑𝛼

𝐵T 𝜑𝐵T 𝛽1 ⊕ 𝛽3

𝛽2
= 0 𝛽2 = 0

𝐴
𝐴𝜑

𝐵T𝛽1 = 0
𝐵T𝛽1 = 0

𝜑𝐵T𝛽1 = 0 𝛽1 = 0

𝐴𝜑𝛼 = 0

Encryption direction:
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3.4 Impossible differential cryptanalysis

Theorem 1: Assume that 𝒜(2) and ℬ(2) are full-rank. There exists a 5-round impossible differential 

𝛼 → 𝜑𝛼 for UFLM instances where 𝛼 is a non-zero solution for equation 𝒜(1)𝑥 = 0 and ord(𝜑) = 2.

Corollary 1: Assume that 𝒜(2) and ℬ(2) are full-rank. There exists a 4-round impossible differential 

𝛼 → 𝜑𝛼 for UFLM instances where 𝛼 is a non-zero solution for equation 𝒜(1)𝑥 = 0 and ord(𝜑) = 3.

Corollary 2: Assume that 𝒜(2) and ℬ(2) are full-rank. There exists a 3-round impossible differential 

𝛼 → 𝜑3𝛼 for UFLM instances where 𝛼 is a non-zero solution for equation 𝒜(1)𝑥 = 0 and ord(𝜑) > 3.
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3.5 Zero correlation linear cryptanalysis

Theorem 2: Assume that 𝒜(2) and ℬ(2) are full-rank. There exists a 5-round zero correlation linear 

hull 𝛾 → 𝜑T𝛾 for UFLM instances where 𝛾 is a non-zero solution for equation ℬ(1)𝑥 = 0 and ord(𝜑) 

= 2.

Corollary 3: Assume that 𝒜(2) and ℬ(2) are full-rank. There exists a 4-round zero correlation linear 

hull 𝛾 → 𝜑T 2
𝛾 for UFLM instances where 𝛾 is a non-zero solution for equation ℬ(1)𝑥 = 0 and 

ord(𝜑) = 3.

Corollary 4: Assume that 𝒜(2) and ℬ(2) are full-rank. There exists a 3-round zero correlation linear 

hull 𝛾 → 𝜑T 𝑘−3
𝛾 for UFLM instances where 𝛾 is a non-zero solution for equation ℬ(1)𝑥 = 0 and 

ord(𝜑) = 𝑘 > 3.
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3.6 Integral cryptanalysis 

[SLR+15]: a nontrivial zero correlation linear hull of a block cipher always implies the existence of 

an integral distinguisher

Theorem 3:  Assume that 𝒜(2) and ℬ(2) are full-

rank. If ord(𝜑) = 2, then there exists a 5-round 

integral distinguisher for UFLM instances. If 

ord(𝜑) = 3, then there exists a 4-round integral 

distinguisher for UFLM instances. If ord(𝜑) > 3, 

then there exists a 3-round integral distinguisher 

for UFLM instances.
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4.1 CCA-security results 

The 4-round construction 𝒰ℱℒℳ(4) is CCA security up to birthday bound.

Case 1: The 4-round construction 𝒰ℱℒℳ(4) 𝑓 adopts the same f-function in each round: 

𝑓1 = 𝑓2 = 𝑓3 = 𝑓4 = 𝑓.

Case 2: The 4-round construction 𝒰ℱℒℳ(4) 𝑓1, 𝑓2, 𝑓3, 𝑓4 adopts independent f-functions in each round.

Definition 3 (Good Linear Transformation): A linear transformation

𝜑 =
𝜑𝑈𝐿 𝜑𝑈𝑅

𝜑𝐵𝐿 𝜑𝐵𝑅

over 𝐹2
2𝑛×2𝑛 is said to be good if the three matrices 𝜑𝑈𝑅, 𝜑𝑈𝑅

−1 and 𝜑𝑈𝑅 ⊕

𝜑𝑈𝑅
−1 are full-rank. 

Example: 𝜑 =
𝜎 𝜎 ⊕ 𝐼
𝑂 𝐼The last round omits 𝜑.  
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4.2 CCA security for 𝓤𝓕𝓛𝓜(𝟒) 𝒇

Theorem 4: Assume 𝑞 ≤ 2𝑛/2, Then, for the 4-round idealized construction 𝒰ℱℒℳ(4) 𝑓 defined 

upon a secret random function 𝑓 and a good linear transformation 𝜑, it holds:

𝐴𝑑𝑣
𝒰ℱℒℳ 4
𝐶𝐶𝐴 𝑞 ≤

6𝑞2

2𝑛
+

𝑞2

22𝑛

Interaction (q non-redundant forward/inverse queries) between an adversary D and oracles 

𝒰ℱℒℳ(4) 𝑓 or 𝛱:

𝑄 = { 𝐿0
1

, 𝑅0
1

, 𝐿4
1

, 𝑅4
1

, ⋯ , 𝐿0
𝑞

, 𝑅0
𝑞

, 𝐿4
𝑞

, 𝑅4
𝑞

}
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4.3 Bound the ratio 

𝒰ℱℒℳ(4) 𝑓∗ ⊢ 𝑄′ : if 𝒰ℱℒℳ(4) 𝑓∗ 𝐿0, 𝑅0 = 𝐿4, 𝑅4 for all 𝐿0, 𝑅0 , 𝐿4, 𝑅4 ∈ 𝑄′;

𝛱∗ ⊢ 𝑄′ : if 𝛱∗ 𝐿0, 𝑅0 = 𝐿4, 𝑅4 for all 𝐿0, 𝑅0 , 𝐿4, 𝑅4 ∈ 𝑄′.

Fix an attainable 𝑄,

𝜇 𝑄

𝜈 𝑄
=

𝑃𝑟 𝑓 ← (𝐹2
𝑛↦ 𝐹2

𝑛): 𝒰ℱℒℳ(4) 𝑓 ⊢ 𝑄

𝑃𝑟 𝛱 ← (𝐹2
2𝑛↦ 𝐹2

2𝑛): 𝛱 ⊢ 𝑄

𝑃𝑟 𝛱 ← (𝐹2
2𝑛↦ 𝐹2

2𝑛): 𝛱 ⊢ 𝑄 = ි

𝑖=0

𝑞−1

1

22𝑛 − 𝑖

𝐸𝑥𝑡𝐹 = 𝑋 ∈ 𝐹2
𝑛 𝑋, 𝑅0 , 𝐿4, 𝑅4 ∈ 𝑄 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑅0, 𝐿4, 𝑅4 𝑜𝑟

𝐿0, 𝑅0 , 𝑋, 𝑅4 ∈ 𝑄 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒𝐿0, 𝑅0, 𝑅4}
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4.4 Bound the 𝝁 𝑸

𝜇 𝑄  = 𝑃𝑟 𝑓 ← (𝐹2
𝑛↦ 𝐹2

𝑛): 𝒰ℱℒℳ(4) 𝑓 ⊢ 𝑄 ≥ 𝑃𝑟
𝑓

𝒰ℱℒℳ 4 𝑓 ⊢ 𝑄 ¬𝐵𝑎𝑑(𝑓)) × (1 − 𝑃𝑟
𝑓

(𝐵𝑎𝑑(𝑓)))

Given a random function 𝑓, let 𝐵𝑎𝑑(𝑓) be a predicate that holds if any of the following conditions is met:

1. There exists a record 𝐿0, 𝑅0 , 𝐿4, 𝑅4 ∈ 𝑄 such that 𝜑𝑈𝐿 ⋅ 𝐿0 ⊕ 𝜑𝑈𝑅 ⋅ 𝑅0 ⊕ 𝜑𝑈𝑅 ⋅ 𝑓 𝐿0 ∈ 𝐸𝑥𝑡𝐹 or 

(𝜑−1)𝑈𝐿 ⋅ 𝐿4 ⊕ (𝜑−1)𝑈𝑅⋅ 𝑅4 ⊕ (𝜑−1)𝑈𝑅⋅ 𝑓 𝐿4 ∈ 𝐸𝑥𝑡𝐹; 

2. There exist distinct records 𝐿0, 𝑅0 , 𝐿4, 𝑅4 , 𝐿0
′ , 𝑅0

′ , 𝐿4
′ , 𝑅4

′ ∈ 𝑄, such that 𝐿0 ≠ 𝐿0
′ , but 

𝜑𝑈𝐿 ⋅ 𝐿0 ⊕ 𝜑𝑈𝑅 ⋅ 𝑅0 ⊕ 𝜑𝑈𝑅 ⋅ 𝑓 𝐿0 = 𝜑𝑈𝐿 ⋅ 𝐿0
′ ⊕ 𝜑𝑈𝑅 ⋅ 𝑅0

′ ⊕ 𝜑𝑈𝑅 ⋅ 𝑓 𝐿0
′ ; 

3.    There exist distinct records 𝐿0, 𝑅0 , 𝐿4, 𝑅4 , 𝐿0
′ , 𝑅0

′ , 𝐿4
′ , 𝑅4

′ ∈ 𝑄, such that 𝐿4 ≠ 𝐿4
′ , but 

(𝜑−1)𝑈𝐿 ⋅ 𝐿4 ⊕ (𝜑−1)𝑈𝑅⋅ 𝑅4 ⊕ (𝜑−1)𝑈𝑅⋅ 𝑓 𝐿4 = (𝜑−1)𝑈𝐿 ⋅ 𝐿4
′ ⊕ (𝜑−1)𝑈𝑅⋅ 𝑅4

′ ⊕ (𝜑−1)𝑈𝑅⋅ 𝑓 𝐿4
′ ;

4.    There exist two records 𝐿0, 𝑅0 , 𝐿4, 𝑅4 , 𝐿0
′ , 𝑅0

′ , 𝐿4
′ , 𝑅4

′ ∈ 𝑄 (not necessarily distinct) such     

that: 𝜑𝑈𝐿 ⋅ 𝐿0 ⊕ 𝜑𝑈𝑅 ⋅ 𝑅0 ⊕ 𝜑𝑈𝑅 ⋅ 𝑓 𝐿0 = (𝜑−1)𝑈𝐿 ⋅ 𝐿4
′ ⊕ (𝜑−1)𝑈𝑅⋅ 𝑅4

′ ⊕ (𝜑−1)𝑈𝑅⋅ 𝑓 𝐿4
′ .
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4.5 Bound the 𝝁 𝑸

Lemma 1: When 𝑞 ≤ 2𝑛/2, we have: 

𝑃𝑟𝑓(𝐵𝑎𝑑(𝑓)) ≤
6𝑞2

2𝑛
.

If 𝐵𝑎𝑑 𝑓 does not hold (the probability of which has a lower bound), then 𝒰ℱℒℳ(4) 𝑓 ⊢ 𝑄 is 

equivalent with 2q distinct equations on the f-function.

𝑃𝑟𝑓 𝒰ℱℒℳ 4 𝑓 ⊢ 𝑄 ¬𝐵𝑎𝑑(𝑓)) ≥
1

(2𝑛)2𝑞

𝜇 𝑄 ≥ (1 −
6𝑞2

2𝑛
)

1

(2𝑛)2𝑞
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4.6 Bound the ratio 

𝜇 𝑄

𝜈 𝑄
=

𝑃𝑟 𝑓 ← (𝐹2
𝑛↦ 𝐹2

𝑛): 𝒰ℱℒℳ(4) 𝑓 ⊢ 𝑄

𝑃𝑟 𝛱 ← (𝐹2
2𝑛↦ 𝐹2

2𝑛): 𝛱 ⊢ 𝑄

≥ (1 −
6𝑞2

2𝑛 )(
1

(2𝑛)2𝑞 )/ ෑ
𝑖=0

𝑞−1
1

22𝑛−𝑖

 ≥ 1 −
6𝑞2

2𝑛  −
𝑞2

22𝑛

𝐷𝑖𝑠𝑡 𝜇 𝑄 , 𝜈 𝑄 ≤
6𝑞2

2𝑛
 +

𝑞2

22𝑛

𝐴𝑑𝑣
𝒰ℱℒℳ 4
𝐶𝐶𝐴 𝑞 ≤

6𝑞2

2𝑛
+

𝑞2

22𝑛
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4.7 CCA security for 𝓤𝓕𝓛𝓜(𝟒) 𝒇𝟏, 𝒇𝟐, 𝒇𝟑, 𝒇𝟒

Theorem 5: Assume 𝑞 ≤ 2𝑛/2, Then, for the 4-round idealized construction 𝒰ℱℒℳ(4) 𝑓1, 𝑓2, 𝑓3, 𝑓4

defined upon four independent secret random functions 𝑓1, 𝑓2, 𝑓3, 𝑓4 and an invertible linear 

transformation 𝜑, it holds:

𝐴𝑑𝑣
𝒰ℱℒℳ 4
𝐶𝐶𝐴 𝑞 ≤

𝑞2

2𝑛
+

𝑞2

22𝑛

Corollary 5: The CCA security of the 4-round Lai-Massey construction is superior to that of the 4-

round Feistel construction when utilizing the same f-function in each round.

Corollary 6: If the linear transformation 𝜑 of a 4-round UFLM} instance adopts 𝑂 − 𝐼 block matrix, 

then its CCA security is identical to the 4-round Feistel construction.
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4.8 CCA security for 𝓤𝓕𝓛𝓜(𝟒) 𝒑 and 𝓤𝓕𝓛𝓜(𝟒) 𝒑𝟏, 𝒑𝟐, 𝒑𝟑, 𝒑𝟒

Theorem 6: Assume 𝑞 ≤ 2𝑛/2, Then, for the 4-round idealized construction 𝒰ℱℒℳ(4) 𝑝 defined 

upon a secret random permutation 𝑝 and a good linear transformation 𝜑, it holds:

𝐴𝑑𝑣
𝒰ℱℒℳ 4
𝐶𝐶𝐴 𝑞 ≤

14𝑞2

2𝑛
+

𝑞2

22𝑛

Theorem 7: Assume 𝑞 ≤ 2𝑛/2, Then, for the 4-round idealized construction 𝒰ℱℒℳ(4) 𝑝1, 𝑝2, 𝑝3, 𝑝4

defined upon four independent secret random permutations 𝑝1, 𝑝2, 𝑝3, 𝑝4 and an invertible linear 

transformation 𝜑, it holds:

𝐴𝑑𝑣
𝒰ℱℒℳ 4
𝐶𝐶𝐴 𝑞 ≤

3𝑞2

2𝑛
+

𝑞2

22𝑛
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4.9 Proposal for a UFLM instance 

Proposition 1: There exists a 4-round impossible differential 

0, 𝛼 → (𝛼, 𝛼) where 𝛼 ≠ 0. 

Proposition 2: There exists a 4-round zero correlation linear 

hull 𝛾, 0 → (𝛾, 𝛾) where 𝛾 ≠ 0, which leads to a 4-round 

integral distinguisher.

Proposition 3: The 4-round construction is CCA-secure when 

utilizing different f-functions in each round.
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5.1 Conclusion 

• The framework UFLM is proposed for reassessing the security of Feistel and Lai-Massey 

structures. 

• The linear transformation employed in a cipher structure is directly related to its security, which 

provides guidance for the design and cryptanalysis.

• The order of branch permutation is 2 and the order of an orthomorphic permutation is at least 3;

• The number of rounds of distinguishers for UFLM instances with various orders of linear 

transformations;

• CCA security of 4-round UFLM construction;

• Proposal for a UFLM instance.

• Lai-Massey structure does benefit from the orthomorphic permutation in both aspects.
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5.2 Future work 

• When evaluating the number of rounds of distinguishers, UFLM instances that employ bijective f-

functions are considered.

• The issue of non-invertible f-functions remains a topic for subsequent investigation. 

• If f-function is composed of multiple smaller components, such as S-boxes, it is feasible to convert 

a UFLM instance into an alternative structure with several smaller-scale S-boxes.

• Security evaluation for structures with multiple branches and multiple f-functions.



Thanks for your attention
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