

UFLM: A unified framework for Feistel structure and Lai-Massey structure

Zhengyi Dai, Chun Guo and Chao Li

National University of Defense Technology and Shandong University

Dec 19th 2024

Outline

- 1. Introduction
- 2. Properties of Lai-Massey structure
- 3. Design and cryptanalysis of framework UFLM
- 4. CCA security of UFLM
- 5. Conclusion and future work

Design and cryptanalysis of UFLM

1.1 The design of block ciphers

Introduction

The design of block ciphers

- Confusion: Non-linear components (e.g. S-box)
- Diffusion: Linear components (e.g. MDS matrix)
- Cipher structure: Feistel structure, SP network,

Lai-Massey structure, Generalized Feistel structure

1.2 Comparison between Feistel structure and Lai-Massey structure

Comparison		Feistel structure	Lai-Massey structure	
Similarities		Two equal-sized branches.		
		The f-function may not necessarily be invertible.		
		CPA security: 3 rounds CCA security: 4 rounds		
Differences	Design	The input and output of f- function are related to only one branch.	The input and output of f- function are related to two branches.	
		Branch permutation	Orthomorphic permutation	
	Distinguishers	5-round impossible differentials	FOX block cipher: 4-round impossible differentials	

Properties of LM structure

Observation: There is always longer impossible differentials for block ciphers when considering the details of f-functions.

Design and cryptanalysis of UFLM

Question 1: The number of rounds of impossible differentials for Lai-Massey structure may be limited to 4 rounds. From the perspective of design, what factors influence the number of rounds of distinguishers?

DCC 2011 Quasi-Feistel construction: consistency between Feistel and Lai-Massey constructions regarding CPA and CCA security results; TIT 2023 Unified structure: Feistel-like structures with a single f-function.

Question 2: Can we reconsider the differences in distinguishers and provable security between Feistel and Lai Massey structures from a unified framework?

2.1 Lai-Massey structure and its another representation

2.2 The r-round iteration of Lai-Massey structure

2.3 Lai-Massey structure and its equivalent structure

The differences between the Lai-Massey and Feistel structures in design and security are attributed to different properties of orthomorphic permutation and branch permutation.

2.4 The properties of orthomorphic permutation

Definition 1: Let (G, +) be a finite abelian group and $\sigma: G \mapsto G$ be a mapping from G to G. If σ and $x \mapsto \sigma(x) - x$ are both permutations, then σ is called an orthomorphic permutation.

Set G as F_2^n , the group operation as \bigoplus , and the mapping σ as a linear orthomorphic permutation.

Property 1: For a linear orthomorphic permutation σ , we have ord(σ) \geq 3.

Property 2: The linear mapping $x \mapsto \sigma^2(x) \oplus x$ is a permutation.

The order of branch permutation is 2, while the order of an orthomorphic permutation is at least 3.

2.5 Conjugated equivalence

Definition 2: Suppose M, N are $n \times n$ invertible matrices over F_2 , if there exists an $n \times n$ invertible matrix P over F_2 , such that $P^{-1}MP = N$, then matrix M is said to be conjugated equivalent to N, denoted as $M \sim N$.

Property 3: Suppose M, N are $n \times n$ invertible matrices over F_2 , if M is conjugated equivalent to N, then ord(M) = ord(N).

2.6 Examples

Example 1: There are six 2×2 invertible matrices over F_2 .

Matrices M_5 and M_6 are orthomorphic permutations.

Other matrices are not orthomorphic permutations.

ord
$$(M_5)$$
 = ord (M_6) = 3,
ord (M_2) = ord (M_3) = ord (M_4) = 2,
ord (M_1) = 1.

$$M_1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, M_2 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, M_3 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix},$$

$$M_4 = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, M_5 = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}, M_6 = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}.$$

Example 2: For a linear orthomorphic permutation σ , $\sigma' = \begin{pmatrix} I & I \\ O & I \end{pmatrix} \begin{pmatrix} \sigma & O \\ O & I \end{pmatrix} \begin{pmatrix} I & I \\ O & I \end{pmatrix} = \begin{pmatrix} \sigma & \sigma \oplus I \\ O & I \end{pmatrix}$ ord $(\sigma) = \operatorname{ord}(\sigma')$.

Example 3: As shown in Example 1, there are three equivalence classes:

 $\{M_1\}, \{M_2, M_3, M_4\}, \{M_5, M_6\}.$

Properties of LM structure

3.1 The framework UFLM

The framework UFLM is a collection of cipher structures, including Feistel and Lai-Massey structures.

$$\begin{pmatrix} L_i \\ R_i \end{pmatrix} := \varphi \begin{pmatrix} L_{i-1} \\ R_{i-1} \oplus f(L_{i-1}) \end{pmatrix}$$

UFLM instance: $\mathcal{U}_{\varphi} = \{E_{f,\varphi} | f: F_2^n \mapsto F_2^n\}$. $E_{f,\varphi}$ is a single-round

block cipher employing the instance $\mathcal{U}_{arphi}.$

If φ is branch permutation, then the instance is Feistel structure.

If $\varphi = \sigma'$, then the instance is equivalent Lai-Massey structure.

UFLM construction: $\mathcal{UFLM} = \{ \mathcal{U}_{\varphi} | \varphi : F_2^{2n} \mapsto F_2^{2n} \}.$

r-round UFLM instance $u_{\varphi}^{(r)}$ (construction $u\mathcal{FLM}^{(r)}$): the r-fold composition of u_{φ} ($u\mathcal{FLM}$)

The f-functions adopted in each round are considered as (secret) random functions.

CCA security of UFLM

3.2 Research object

$$A = (I O), B = (O I), \mathcal{A}^{(r)} = \begin{pmatrix} A \\ A\varphi \\ \vdots \\ A\varphi^{r-1} \end{pmatrix}, \mathcal{B}^{(r)} = \begin{pmatrix} B \\ B\varphi^{\mathrm{T}} \\ \vdots \\ B(\varphi^{\mathrm{T}})^{r-1} \end{pmatrix}$$

Research object: UFLM instances that satisfy the following conditions:

(1) bijective f-function; (2) $\mathcal{A}^{(2)}$ and $\mathcal{B}^{(2)}$ are full-rank; (3) ord(φ) ≥ 2 .

Property 4: If $\mathcal{A}^{(2)}$ is full-rank, then there exists at least one differentially active f-function covering two consecutive rounds for UFLM instances.

Property 5: If $\mathcal{B}^{(2)}$ is full-rank, then there exists at least one linearly active f-function covering two consecutive rounds for UFLM instances.

3.3 5-round impossible differential

Introduction

Theorem 1: Assume that $\mathcal{A}^{(2)}$ and $\mathcal{B}^{(2)}$ are full-rank. There exists a 5-round impossible differential $\alpha \to \varphi \alpha$ for UFLM instances where α is a non-zero solution for equation $\mathcal{A}^{(1)}x = 0$ and $\operatorname{ord}(\varphi) = 2$.

Encryption direction:

$$\alpha \to \varphi \alpha \to \alpha \oplus \varphi B^{\mathsf{T}} \beta_1 \to \varphi \alpha \oplus B^{\mathsf{T}} \beta_1 \oplus \varphi B^{\mathsf{T}} \beta_2$$

Decryption direction:

$$\varphi \alpha \oplus B^{\mathrm{T}} \beta_3 \leftarrow \alpha \leftarrow \varphi \alpha$$

$$f_1: 0 \to 0$$

$$f_2: A\varphi\alpha \to \beta_1$$

$$f_3: A\varphi B^{\mathrm{T}}\beta_1 \to \beta_2$$

$$f_4$$
: $A\varphi\alpha \to \beta_3$

$$(B^{\mathsf{T}} \ \varphi B^{\mathsf{T}}) \begin{pmatrix} \beta_1 \oplus \beta_3 \\ \beta_2 \end{pmatrix} = 0 \implies \beta_2 = 0 \implies \begin{pmatrix} A \\ A \varphi \end{pmatrix} B^{\mathsf{T}} \beta_1 = 0 \implies \beta_1 = 0$$

$$\Rightarrow A\varphi\alpha = 0$$
 Contradiction!

3.4 Impossible differential cryptanalysis

Theorem 1: Assume that $\mathcal{A}^{(2)}$ and $\mathcal{B}^{(2)}$ are full-rank. There exists a 5-round impossible differential $\alpha \to \varphi \alpha$ for UFLM instances where α is a non-zero solution for equation $\mathcal{A}^{(1)}x = 0$ and $\operatorname{ord}(\varphi) = 2$.

Design and cryptanalysis of UFLM

Corollary 1: Assume that $\mathcal{A}^{(2)}$ and $\mathcal{B}^{(2)}$ are full-rank. There exists a 4-round impossible differential $\alpha \to \varphi \alpha$ for UFLM instances where α is a non-zero solution for equation $\mathcal{A}^{(1)}x = 0$ and $\operatorname{ord}(\varphi) = 3$.

Corollary 2: Assume that $\mathcal{A}^{(2)}$ and $\mathcal{B}^{(2)}$ are full-rank. There exists a 3-round impossible differential $\alpha \to \varphi^3 \alpha$ for UFLM instances where α is a non-zero solution for equation $\mathcal{A}^{(1)}x = 0$ and $\operatorname{ord}(\varphi) > 3$.

Theorem 2: Assume that $\mathcal{A}^{(2)}$ and $\mathcal{B}^{(2)}$ are full-rank. There exists a 5-round zero correlation linear hull $\gamma \to \varphi^{\mathrm{T}} \gamma$ for UFLM instances where γ is a non-zero solution for equation $\mathcal{B}^{(1)} x = 0$ and $\operatorname{ord}(\varphi)$ = 2.

Properties of LM structure

Corollary 3: Assume that $\mathcal{A}^{(2)}$ and $\mathcal{B}^{(2)}$ are full-rank. There exists a 4-round zero correlation linear hull $\gamma \to (\varphi^T)^2 \gamma$ for UFLM instances where γ is a non-zero solution for equation $\mathcal{B}^{(1)} x = 0$ and $ord(\varphi) = 3$.

Corollary 4: Assume that $\mathcal{A}^{(2)}$ and $\mathcal{B}^{(2)}$ are full-rank. There exists a 3-round zero correlation linear hull $\gamma \to (\varphi^T)^{k-3} \gamma$ for UFLM instances where γ is a non-zero solution for equation $\mathcal{B}^{(1)} x = 0$ and $ord(\varphi) = k > 3$.

[SLR+15]: a nontrivial zero correlation linear hull of a block cipher always implies the existence of an integral distinguisher

Design and cryptanalysis of UFLM

Theorem 3: Assume that $\mathcal{A}^{(2)}$ and $\mathcal{B}^{(2)}$ are full-rank. If $\operatorname{ord}(\varphi)=2$, then there exists a 5-round integral distinguisher for UFLM instances. If $\operatorname{ord}(\varphi)=3$, then there exists a 4-round integral distinguisher for UFLM instances. If $\operatorname{ord}(\varphi)>3$, then there exists a 3-round integral distinguisher for UFLM instances.

$\overline{\operatorname{ord}(\varphi)}$	Distinguishers	Rounds	Structures
2	Impossible differential	5	
	Zero correlation linear hull	5	Feistel structure
	Integral distinguisher	5	
3	Impossible differential	4	
	Zero correlation linear hull	4	FOX64 structure
	Integral distinguisher	4	
> 3	Impossible differential	3	
	Zero correlation linear hull	3	
	Integral distinguisher	3	

4.1 CCA-security results

The 4-round construction $\mathcal{UFLM}^{(4)}$ is CCA security up to birthday bound.

Case 1: The 4-round construction $\mathcal{UFLM}^{(4)}[f]$ adopts the same f-function in each round:

$$f_1 = f_2 = f_3 = f_4 = f$$
.

Case 2: The 4-round construction $\mathcal{UFLM}^{(4)}[f_1, f_2, f_3, f_4]$ adopts independent f-functions in each round.

The last round omits φ .

Definition 3 (Good Linear Transformation): A linear transformation

$$arphi = \left(egin{matrix} arphi_{UL} & arphi_{UR} \ arphi_{BL} & arphi_{BR} \end{matrix}
ight)$$

over $F_2^{2n\times 2n}$ is said to be good if the three matrices φ_{UR} , φ_{UR}^{-1} and φ_{UR} \oplus φ_{UR}^{-1} are full-rank.

Example:
$$\varphi = \begin{pmatrix} \sigma & \sigma \oplus I \\ O & I \end{pmatrix}$$

4.2 CCA security for $UFLM^{(4)}[f]$

Theorem 4: Assume $q \le 2^n/2$, Then, for the 4-round idealized construction $\mathcal{UFLM}^{(4)}[f]$ defined upon a secret random function f and a good linear transformation φ , it holds:

$$Adv_{\mathcal{UFLM}^{(4)}}^{CCA}(q) \le \frac{6q^2}{2^n} + \frac{q^2}{2^{2n}}$$

Interaction (q non-redundant forward/inverse queries) between an adversary D and oracles $\mathcal{UFLM}^{(4)}[f]$ or Π :

$$Q = \{ \left(\left(L_0^{(1)}, R_0^{(1)} \right), \left(L_4^{(1)}, R_4^{(1)} \right) \right), \cdots, \left(\left(L_0^{(q)}, R_0^{(q)} \right), \left(L_4^{(q)}, R_4^{(q)} \right) \right) \}$$

4.3 Bound the ratio

$$\mathcal{UFLM}^{(4)}[f^*] \vdash Q'$$
: if $\mathcal{UFLM}^{(4)}[f^*](L_0, R_0) = (L_4, R_4)$ for all $((L_0, R_0), (L_4, R_4)) \in Q'$; $\Pi^* \vdash Q'$: if $\Pi^*(L_0, R_0) = (L_4, R_4)$ for all $((L_0, R_0), (L_4, R_4)) \in Q'$.

Design and cryptanalysis of UFLM

Fix an attainable Q,

$$\frac{\mu(Q)}{\nu(Q)} = \frac{Pr(f \leftarrow (F_2^n \mapsto F_2^n): \mathcal{UFLM}^{(4)}[f] \vdash Q)}{Pr(\Pi \leftarrow (F_2^{2n} \mapsto F_2^{2n}): \Pi \vdash Q)}$$

$$Pr(\Pi \leftarrow (F_2^{2n} \mapsto F_2^{2n}): \Pi \vdash Q) = \prod_{i=0}^{q-1} \frac{1}{2^{2n} - i}$$

$$ExtF = \{X \in F_2^n | ((X, R_0), (L_4, R_4)) \in Q \text{ for some } R_0, L_4, R_4 \text{ or } ((L_0, R_0), (X, R_4)) \in Q \text{ for some} L_0, R_0, R_4 \}$$

4.4 Bound the $\mu(Q)$

$$\mu(Q) = Pr\big(f \leftarrow (F_2^n \mapsto F_2^n): \, \mathcal{UFLM}^{(4)}\left[f\right] \vdash Q\big) \geq \Pr_f\big(\mathcal{UFLM}^{(4)}\left[f\right] \vdash Q \mid \neg Bad(f)) \times (1 - \Pr_f(Bad(f)))$$

Given a random function f, let Bad(f) be a predicate that holds if any of the following conditions is met:

- 1. There exists a record $((L_0, R_0), (L_4, R_4)) \in Q$ such that $\varphi_{UL} \cdot L_0 \oplus \varphi_{UR} \cdot R_0 \oplus \varphi_{UR} \cdot f(L_0) \in ExtF$ or $(\varphi^{-1})_{UL} \cdot L_4 \oplus (\varphi^{-1})_{UR} \cdot R_4 \oplus (\varphi^{-1})_{UR} \cdot f(L_4) \in ExtF$;
- 2. There exist distinct records $((L_0, R_0), (L_4, R_4)), ((L'_0, R'_0), (L'_4, R'_4)) \in Q$, such that $L_0 \neq L'_0$, but $\varphi_{UL} \cdot L_0 \oplus \varphi_{UR} \cdot R_0 \oplus \varphi_{UR} \cdot f(L_0) = \varphi_{UL} \cdot L'_0 \oplus \varphi_{UR} \cdot R'_0 \oplus \varphi_{UR} \cdot f(L'_0)$;
- 3. There exist distinct records $((L_0, R_0), (L_4, R_4)), ((L'_0, R'_0), (L'_4, R'_4)) \in Q$, such that $L_4 \neq L'_4$, but $(\varphi^{-1})_{UL} \cdot L_4 \oplus (\varphi^{-1})_{UR} \cdot R_4 \oplus (\varphi^{-1})_{UR} \cdot f(L_4) = (\varphi^{-1})_{UL} \cdot L'_4 \oplus (\varphi^{-1})_{UR} \cdot R'_4 \oplus (\varphi^{-1})_{UR} \cdot f(L'_4);$
- 4. There exist two records $((L_0, R_0), (L_4, R_4)), ((L'_0, R'_0), (L'_4, R'_4)) \in Q$ (not necessarily distinct) such that: $\varphi_{UL} \cdot L_0 \oplus \varphi_{UR} \cdot R_0 \oplus \varphi_{UR} \cdot f(L_0) = (\varphi^{-1})_{UL} \cdot L'_4 \oplus (\varphi^{-1})_{UR} \cdot R'_4 \oplus (\varphi^{-1})_{UR} \cdot f(L'_4)$.

4.5 Bound the $\mu(oldsymbol{Q})$

Lemma 1: When $q \le 2^n/2$, we have:

$$Pr_f(Bad(f)) \le \frac{6q^2}{2^n}.$$

If Bad(f) does not hold (the probability of which has a lower bound), then $\mathcal{UFLM}^{(4)}[f] \vdash Q$ is equivalent with 2q distinct equations on the f-function.

$$Pr_f(\mathcal{UFLM}^{(4)}[f] \vdash Q \mid \neg Bad(f)) \ge \frac{1}{(2^n)^{2q}}$$

$$\mu(Q) \ge (1 - \frac{6q^2}{2^n}) \frac{1}{(2^n)^{2q}}$$

4.6 Bound the ratio

$$\frac{\mu(Q)}{\nu(Q)} = \frac{Pr(f \leftarrow (F_2^n \mapsto F_2^n): \mathcal{UFLM}^{(4)}[f] \vdash Q)}{Pr(\Pi \leftarrow (F_2^{2n} \mapsto F_2^{2n}): \Pi \vdash Q)}$$

$$\geq (1 - \frac{6q^2}{2^n})(\frac{1}{(2^n)^{2q}}) / \prod_{i=0}^{q-1} \frac{1}{2^{2n} - i}$$

$$\geq 1 - \frac{6q^2}{2^n} - \frac{q^2}{2^{2n}}$$

$$Dist(\mu(Q), \nu(Q)) \le \frac{6q^2}{2^n} + \frac{q^2}{2^{2n}}$$

$$Adv_{\mathcal{UFLM}^{(4)}}^{CCA}(q) \le \frac{6q^2}{2^n} + \frac{q^2}{2^{2n}}$$

4.7 CCA security for $\mathcal{UFLM}^{(4)}\left[f_1,f_2,f_3,f_4\right]$

Theorem 5: Assume $q \le 2^n/2$, Then, for the 4-round idealized construction $\mathcal{UFLM}^{(4)}[f_1, f_2, f_3, f_4]$ defined upon four independent secret random functions f_1, f_2, f_3, f_4 and an invertible linear transformation φ , it holds:

$$Adv_{\mathcal{UFLM}^{(4)}}^{CCA}(q) \le \frac{q^2}{2^n} + \frac{q^2}{2^{2n}}$$

Corollary 5: The CCA security of the 4-round Lai-Massey construction is superior to that of the 4-round Feistel construction when utilizing the same f-function in each round.

Corollary 6: If the linear transformation φ of a 4-round UFLM} instance adopts O-I block matrix, then its CCA security is identical to the 4-round Feistel construction.

4.8 CCA security for $\mathcal{UFLM}^{(4)}\left[p\right]$ and $\mathcal{UFLM}^{(4)}\left[p_1,p_2,p_3,p_4\right]$

Theorem 6: Assume $q \le 2^n/2$, Then, for the 4-round idealized construction $\mathcal{UFLM}^{(4)}[p]$ defined upon a secret random permutation p and a good linear transformation φ , it holds:

$$Adv_{\mathcal{UFLM}^{(4)}}^{CCA}(q) \le \frac{14q^2}{2^n} + \frac{q^2}{2^{2n}}$$

Theorem 7: Assume $q \le 2^n/2$, Then, for the 4-round idealized construction $\mathcal{UFLM}^{(4)}$ $[p_1, p_2, p_3, p_4]$ defined upon four independent secret random permutations p_1, p_2, p_3, p_4 and an invertible linear transformation φ , it holds:

$$Adv_{\mathcal{UFLM}^{(4)}}^{CCA}(q) \le \frac{3q^2}{2^n} + \frac{q^2}{2^{2n}}$$

4.9 Proposal for a UFLM instance

$$\begin{cases} L_i = R_{i-1} \oplus f(L_{i-1}), \\ R_i = L_{i-1} \oplus R_{i-1} \oplus f(L_{i-1}). \end{cases}$$

Proposition 1: There exists a 4-round impossible differential $(0, \alpha) \rightarrow (\alpha, \alpha)$ where $\alpha \neq 0$.

Proposition 2: There exists a 4-round zero correlation linear hull $(\gamma, 0) \rightarrow (\gamma, \gamma)$ where $\gamma \neq 0$, which leads to a 4-round integral distinguisher.

Proposition 3: The 4-round construction is CCA-secure when utilizing different f-functions in each round.

Properties of LM structure

5.1 Conclusion

- The framework UFLM is proposed for reassessing the security of Feistel and Lai-Massey structures.
- The linear transformation employed in a cipher structure is directly related to its security, which
 provides guidance for the design and cryptanalysis.
 - The order of branch permutation is 2 and the order of an orthomorphic permutation is at least 3;
 - The number of rounds of distinguishers for UFLM instances with various orders of linear transformations;
 - CCA security of 4-round UFLM construction;
 - Proposal for a UFLM instance.
- Lai-Massey structure does benefit from the orthomorphic permutation in both aspects.

5.2 Future work

- When evaluating the number of rounds of distinguishers, UFLM instances that employ bijective ffunctions are considered.
 - The issue of non-invertible f-functions remains a topic for subsequent investigation.

- If f-function is composed of multiple smaller components, such as S-boxes, it is feasible to convert a UFLM instance into an alternative structure with several smaller-scale S-boxes.
 - Security evaluation for structures with multiple branches and multiple f-functions.

Thanks for your attention