Polynomial Inversion Algorithms in Constant Time for

Post-Quantum Cryptography

Abhraneel Dutta
Emrah Karagoz
Edoardo Persichetti
Pakize Sanal

Florida Atlantic University (USA)

1/32

e Constant Time Polynomial Inversion
@ Our Contributions

@ Constant-Time Fermat Little Theorem and Extended GCD Based
Inversion

e IT Variant Inversion
e Software Implementation

@ Observations and Future Work

2/32

Polynomial Inversion in Post-Quantum Cryptosystem

@ Polynomial inversion is a crucial operation in many post-quantum
cryptosystems.

@ For example, polynomial inversion is performed during the key
generation algorithm of both BIKE and LEDAcrypt KEMs.

@ It is important that there exists an efficient algorithm capable of
running in constant time, to prevent timing side-channel attacks.

@ A constant-time algorithm runs for the same time regardless of the
iInput data size.

Our Contributions

@ We analyze the performance of both the constant-time algorithms,
specifically for the cryptosystems like BIKE and LEDACrypt, based on
their mathematical foundations.

@ The variants of FLT-based inversions used for Elliptic Curve Scalar
Multiplication have not been explored in the context of a Constant
Time setup for post-quantum cryptosystems.

e Computationally perform better with less number of polynomial
multiplications compared to constant-time |I'T inversion.

@ A performance comparison is conducted through benchmarking using
software implementation.

Bernstein-Yang Inversion (SafeGCD)

@ The key generation in BIKE computes the multiplicative inverse of a
secret polynomial hg € R = [Fa[x]/(xP + 1) where
xP4+1=(x+1)(XF, x') with ord,(2) = p— 1 i.e. 2 is a primitive
element of GF(p).

o Extended Euclidean Algorithm (extGCD) takes two polynomials f and
g and outputs (gcd(f,g).u.v) where gcd(f.g) = u-f + v - g where
f.g.u.velsx].

@ For the case of BIKE set up, extGCD(xP + 1, hg) = (1, u, v).
Q
u-(xP+1)+v-h =1

=v-hp =1 mod (xP +1)
=’;»h0_1:vinR

Traditional extGCD algorithm is not suitable for cryptographic
applications since it usually contains branches.

Inputs are the secrets, but an attacker can still collect information
about the inputs through running time differences.

A constant time extGCD is required to prevent such timing attack.

Bernstein and Yang provides a constant time version of extGCD

6 /32

Division Steps or divstep function

@ The divstep function is defined as:

divstep : Z x Fa[x] x Fa[x] — Z x Fa[x] x Fa[x]

(1—0,g, 8008y 5~ 0and g(0) £0

5.4

divstep(o,f,g) = { (1 46 F, (f(U)g—g(U}f)) otherwise

@ Bernstein and Yang showed that dividing a degree mg-polynomial by
a degree m; polynomial with mg > my > 0 is equivalent to computing

2mgo — 2my many divsteps.

@ For two coprime polynomials Ry of degree mp and R; of degree m
with mg > myq, 1t takes 2mg — 1 many divstep calls to compute Rl_l

mod Rp.

/32

Algorithm Analysis

@ This algorithm reverses the polynomial in terms of coefficients. For an
input f it performs f' « f(1/x)x9(f),

@ For the two inputs f = xP +1, g = hp(1/x) - xP and their degree
difference be 6 = 1, the algorithm computes hal.

@ This algorithm performs constant number of division steps (2p — 1) or
divstep function calls to compute the inverse of the input polynomial.

Algorithm Analysis

@ The transition of the two polynomials f. g under the divstep
operation is described as a matrix-vector multiplication.

@ A transition matrix T(4, f, g) performs a transition (f,g) — (fi.41).

0 1
f- F g0} o f{{]]) if & > 0 and g(0) # 0
1 - £ e e
(g1> =T(4,f, g) (g) whereT(4,f, g) = ! x) |
_f0) 2(0) otherwise
x X

@ The j-th step transition matrix is T; = T(d;, f;. g;). After n-steps, the input
polynomial becomes

(6) = (o) = (@ 7))

9 /32

Divstep Speed Up (jumpdivstep)

Divide and conquer algorithm to compute (d,. f,, g,) and the n-step
transition matrix T,_1--- Tp:

@ The jumpdivstep function is recursive in nature which splits the
problem into two parts and after recursive calls when it reaches its
base case the divstep function does its work.

@ Jump j steps from o, f, g to d;, f;, g; by calling the same algorithm
recursively.

e Similarly, jump another n — j steps from 0. f;, gj to 0n, fpn, gn.

@ The splitting point can be chosen for any non-null portion of the
maximum degree n, although j = n/2 is likely to be optimal.

10 /32

Complexity Analysis

e The divstep algorithm performs O(n(m—+ n)) operations for n divsteps
and m degree polynomial (the polynomial with the higher degree).

e With the jumpdivstep speed up function and FFT based polynomial
multiplication, the number of operations can be bounded by
(n+ m)log(n+ m) + c'n(log(n))? when n is sufficiently large.

@ For n = m the number of operations is O(n(log n)z)

11 /32

Computes inverse of a polynomial a(x) € R* using Fermat's Little
Theorem as:

1272 = (a(x)¥ 12 mod (xP + 1)

Rewrite 272 —1=5"._ (22’ — 1) . 2(p=2) mod D

icsupp(p—2)
If the binary representation of p — 2 is (p — 2)> = (a;)?_ where
a; € F» then support of p — 2 is defined as
supp(p—2)=4{i€{0,1,...,p—1}| a; # 0}

. k . .
Note: For a(x) € R* computing a(x)? for some k € Z* is equivalent
to performing a permutation or cyclic shift to its coefficients. It can
be called as a k-squaring of a polynomial.

k k ok ok
a(X)E = (Z:Esupp F)2 = ZfEEUpp{a)(xl)z — Zr’Esupp(a} x' %" moc.p

12 J."I 32

Constant-Time |IT Inversion

@ Based Fermat's Little Theorem.

e Computes inverse of a polynomial over a polynomail ring
R = Fa[x]/{(xP + 1)) where x? +1 = (x + 1)(3FP~, x).
@ For p=13, p—2=11=(1011) and a(x) € R* let's compute

a(x)™t = (a(x)*")3

lp — 2|]i] a®” 1
0 1 22 -1
1 1 (322 1)22D +1 _-— 322 1
9 0 (3221—1)231+1 _ 3222—1
3 1 (3222 1)22 o S 322 —1 3

Complexity Analysis

@ The algorithm takes |log(p —2)| + |wt(p — 2)] — 1 polynomial
multiplications and |log(p — 2)| 4+ |wt(p — 2)| — 1 many k-squarings
and one polynomial squaring in R.

@ The value of k in k-squaring depends on p but not on a(x).

o For a fixed prime p, the permutation ok : j — j - 2¥ mod p can be
precomputed for all relevant values of k which also depends only on p.

14 / 32

IT] Variants

@ Purpose: Explore exponentiation algorithms that reduce polynomial
multiplications in calculating the inverse of input polynomials
compared to |'T inversion.

e Key Feature: Algorithms factor and decompose exponents for
constant-time implementation, regardless of polynomial degree.
e Efficiency:

e Minimizes the number of polynomial multiplications.
e Achieves a constant-time structure.

o Implementation:

e Applicable to any polynomial degree.
e Can be implemented in Constant-Time setup

15 /32

CEA Algorithm (Factoring Method)

T. Chang, E. Lu, Y. Lee, Y. Leu, and H. Shyu presented an algorithm

that factors the exponent to perform inversion.

The inverse of « is computed using Fermat's Little Theorem:

_ p—1__ p—2__ i
al=0"""=@0"""1)inR

Factorp—2=a-b

Decompose
P=L _ D = D (2” —1)=2-(27 — 1)((2"")*3"_1 + -+ (29)+1)

. = F ayb—1 ay\h—2, .. a
Key equation: o "~ = (a? 1)(2)P (27)P 22741

16 / 32

CEA Complexity

o Computing 3 = o® ! needs |log(a)| + wt(a) — 1 multiplications.

e Exponentiation 3% where t = 1 427 4 --- 4 (22)>~! needs
log(b) | + wt(b) — 1 multiplications.

@ Final number of multiplications:

(Llog(b)] +wt(b) —1) + ([log(a)] +wt(a) — 1)

17/ 32

TYT Algorithm (Decomposition Method)

Proposed by Takagi, Yoshiki, and Takagi

Decomposes the exponent into a product of factors and a remainder
as follows: p—2 =], ri+h

Decomposition:
oL D BR2 | 5P o f P el 5

The inversion performed as follows:

.2P_1_2 —

p—h—1 p—h-—1 p—h—=2__
. &,2 . 2 _([},2 1)2

B ks

TYT Algorithm

@ Let M(x) = |logy(x)| + wt(x) —1

° r:t(znﬁ’ﬁ:‘ =) = (- ((@{2”—1})(2”}r3‘1+-~-+1)(2r1r? ya—lynal)(21_1?.—."11 rr}rk—1+..,+1)
. M))
M(r2)
.) M(r3) ’)
M(r)

° #MultiplicatiDHS:ZLl M(r;)+h = Z:f:l(llugz(r;ﬂ +wt(r;)— 1)+ h

19 /32

Improved TYT

@ Proposed by Y. Li, G. Chen, Y. Chen, and J. Li

@ Optimized decomposition:

0Pl 9= gp~1-h{ok 1) 4o(2P 21~ 1)

@ Decompose p—2 = Hfle r +hwith h <n.

e For Optimal decomposition wt(h) < wt(p —2) — 2

@ Improves TYT algorithm by re-using some intermediate results

20 /32

Improved TYT

o Letri 2k n=>31,2"and h= Zf:l 2t with ug > up > ... > u,
and t; > to > ... > ty respectively

@ Calculate vy intermediate values where u; > ty:

{ &22”—1 a,zf -3 521 _q 221 -1y

oL - 2h_1

o Used to compute a?* 1 and a along with wt(r;) and wt(h)

multiplications.

@ Total multiplications:

([logy(ri)| + wt(ri) — 1) + wt(h)

||Mx~

21 /32

Short Addition Chain Method

@ The Short Addition Chain (ShAC) of a positive integer r, denoted as
C,, is a sequence of integers with length n where r is obtained by the
addition of previous elements within the chain. For example, Let
r — 18. An addition chain for 18 could be: 1,2.4,8.9, 18.

e It is particularly efficient for large values of numbers with higher
Hamming weights.

@ Provides a significant improvement over traditional IT and TYT
algorithms for specific cases.

22 /32

Addition Chain Algorithm

o Given p—2 =[], r; + h, a short addition chain of r; namely C,, is
constructed with h € C,,.

@ This setup guarantees the computation of a2 =1 while calculating
v i O |
Y .

e #Multiplications < Zle(tlog(r;)j +wt(r;) —1)+1

@ The decomposition of 2°P~1 — 2 can be done as follows:

2p~1 _ g = p(2llarth _ 1y = o(2h. (2ITan — 1) 4 (2 — 1))
—2((2" —1)-e-2". (2" — 1)) and consequently
:((n2f1 1) 2h (0:2"’—1))2

where e = (((2.'”1).*‘2 1 ; 1) o ((2!’1+-"2-++-"J<—1)fk_1 ey ol 1))

23 /32

Comparative Analysis

Table: Comparison of the number of multiplications with different inversion
algorithms discussed in this article using primes corresponding to different levels
of BIKE implementation.

CEA TYT SAC £ Mults # Mults | # Mults | # Mults

P {P . 2} Factorization Decamposition Decamposition (ITH) (CEA) (TYT) (SAC)
10499 4 3 x 3499 41 x 266 + 1 41 x 2° 41 16 20 16 16
12323 4 3% x 377 12289 + 32 48 x 2% + 33 16 19 16 16
24781 7 71 x 349 3 x 8257 + 8 193 x 27 + 75 20 22 13 19
27067 | 9 5x5413 | 67x403+64 211x27+57 22 20 21 | 20
24659 | 5 3x8219 |5x4112+4097 38x2°+17 18 19 | 18 | 18
27581 | 11 3 x 9193 163 x 160 +32 215 x 27 +59 24 22 21 | 20
40073 5 3 x 13657 10 x 4097 + 1 20 x 211 411 19 22 13 18

o A polynomial a(x) = 3574 aix’ €5 [x] (with ax_; = 1) is stored in

K = | k/64] blocks.

Block 1 Block 2 Block K

g a3 64 @127 @64¢ k-1 | pady

24 /32

Benchmarking of Polynomial Inversion Algorithms

; p } BYI 1T1 CEA TYT SAC
s1zehd
. 66 135 12.85 B3R 15.02 760
10499 armga 7.37 16.32 13.78 17.35 12.02
(165) # gf2x mod mul N/A 16 20 16 16
gf2x mod sqr N/A 18,6GRS 10,497 200,992 10,538
mul6d =~ 1.10M =~ 0.44M =~ (.54M = ().44M = 0.44M
sqré4 = = 3.10M = 1.74M = J.48M =~ 1.7%M
86 5.70 17.02 10.80 20.07 10.93
12323 armé4 12.23 21.91 18.74 25.25 16.92
(193) # gf2x mod mul N/A 16 19 16 16
gf2x mod sqr N/A 20.152 12,321 24 578 12,369
mul64 ~ 1.51M 2 0.60M = 0.T1M 2= 0.60M 2 0.60M
sqréd 5 =~ 3.98M =~ 2.39 ~ 4. TTM =~ 2.40M
g X566 IT.03 66.25 A3.51 64.32 12.61
24659 arm6d 45.73 95.18 77.74 96.50 77.88
(386) # gf2x mod mul N/A 18 19 18 19
gf2x mod sqr N/A 41,040 24 657 41,121 24,739
muléd =~ 6.05M =~ 2.68M =~ 2.83M =~ 2.68M 2.83M
sqré4 . 2= 15.88M 2= 0.54M 2= 15.91M 9.57M
X565 22.1T 65.04 14.13 76.33 12,18
24781 arm6a 46.30 101.52 86.50 107.21 80.28
(388) # gfox mod mul N/A 20 22 18 19
gfox mod sqr N/A 41162 24,779 49,542 25.001
mulGd == G.10M = 3.01M = 3.31M = 2.7T1M 2.E86M
sqréd ¥ == 16.01M = 9.64M 2= 19.27M =~ 9.76M
—— 86 2443 76.65 50.10 gT.81 1.94
27067 arméd 54.42 125.42 98.09 137.71 101.62
(423) # gf2x mod mul N/A 22 20 21 20
gf2x mod sqr N/A 43,448 27.065 54,002 27,337
muléd = 7.09M = 3.94M = 3.58M = 3.76M =~ 3.58M
sqro4 a 7= 18.42M 2= 11.48M 2= 22.90M & 11.H9M
. 86 25.34 81.5 53.4 04,94 53.1
27581 arm64 57.34 139.49 111.14 146.93 103.03
(431) # gf2x.mod. sqr N/A 43,962 27,579 55,004 27,850
gfox mod mul N/A 24 22 21 20
mul6d =~ 7.34M 2= 4,46M == 4.09M 2= 3.90M = 3.72M
sqrbd & = 18.99M = 11.91M = 23.80M 12.03M
" 56 EE. 14 191.2 116.62 208,12 13.43
40973 arm6d 127.29 284.38 246.86 300.02 17.01
(641) # gf2x mod mul N/A 19 22 18 18
gf2x mod sqr N/A 73,738 40,971 81,940 40,983
muléad ~= 17.02M =~ 7.81M =~ 9.04M =~ 7.40M =~ 7.40M
sqréd s = 47.34M 2= 26.30M 2= 52.61M == 26.31M

25 /32

Our Observation

IT variants perform fewer polynomial multiplications while computing
the inverse with specific choice for the primes. This improvement can
be achieved through an optimized decomposition and factoring setup,
especially as the Hamming weight of p — 2 increases for various primes

SAC and CEA inversions show a better performance with 1.56x-1.96x
on x86 and 1.24x-1.49x on arm64 compared to the [Tl and TYT
methods.

However, BY inversion has a better performance with 1.76x-3.76x on
x86 and 1.38x-2.56x on arm64 compared to IT and its variants.

IT variants seem better than BY inversion in the hardware designs by
only comparing the number of polynomial multiplications; because of
that, the polynomial squaring can be implemented as nearly
“cost-free” performance overhead in the hardware designs through

special methods.
26 /32

27 /32

Exponentiation Theorem

Let € GF(2™) and t = 14224 (22)2 +... +(2%)°"L. Then there exists
an algorithm for computing ot which requires
M(b) = [log,(b)| + wt(b) — 1 multiplications.

28 /32

Multiplications Calculation

o Let 3 = a?'~1. The exponentiation 3¢ can be computed with
S o (llog(r)] + wt(r;) — 1) multiplications.

o Let C,, = {co,C1,...,Ch—1} be an addition chain for r; where

& = 1 afd. G_1.=F.

o Let A, = {(c},c),(c},cd),...,(ct 1,2)| ct+c2=c and ¢l €

C,vVi=1,2,....n—1and j = 1,2} be the set of addition pairs.

o #Multiplications < S°K_ ([log(r;)| + wt(r;)) — 1) +1

29 /32

Multiplications Calculation

@ Let p=149, p—2 =147 = 18 -8 + 3 where C;3 = {1,2,3,6,12. 18}
and A= {(1, 1),(2.1).(3,3), (6.6),(12,6) }

e Computation of o' with 2148 — 2 = 2((2188 — 1)23 4 (23 — 1))

18 _ 18 _ 18Y7 18 18-8 _
&,2 1 N ((}:2 1)(2) - 4-(27°%)+1 :(_]{2 1

— (v — ((« a
@2)2 . (@ V=@)=(""") 1mukt
e ¥ Y=ie® Y=i® Y Lmuk
@2 . (P N =") =(aY) 1 mult
(@ N2 (@@ =@ =) 1 mult

30 /32

Representation of a polynomial

@ A polynomial a(x) = Zf{ o aix’' € [x] (with ax_; = 1) is stored in
K = | k/64] blocks.

Block 1 EBlock 2 Block K

‘ an a6 ‘ﬂm ﬂ-127| l ae4e @h—1 padn‘

@ mul64: Multiplication of two 64-bit blocks

@ sqr64: Squaring of a 64-bit block

@ Implemented in both x86-64 and arm64

@ Uses Carry-less multiplication (CLMUL) instructions for 64-bit blocks
@ The resulting block is 128-bit

31/32

Implemented Functions

@ gf2x poly mul: Regular polynomial multiplication

o Calls mul64 as needed
e Mainly used in BY inversion

e gf2x mod mul: Modular polynomial multiplication in modulo x? — 1

e Calls a regular polynomial multiplication and a reduction function
e Mainly used in FLT-based inversions

@ gf2x mod_sqr: Squaring of a polynomial a in modulo xP — 1

o Mostly used in the end of FLT-based inversions

@ gf2x mod sqr k inplace: Repeated squaring of a polynomial c
in-place, k times, with reduction modulo xP — 1 after each squaring

e Saves from initialization and storing cost
e Mostly used in FLT-based inversions

32 /32

