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Introduction

• With the possibility of the development of large-scale quantum computers in the near future, there comes a threat to the 
security of cryptographic schemes based on hard mathematical problems that can not resist quantum attacks.

• The goal of Post Quantum Cryptography (PQC) is to design cryptographic systems that are secure against both classical as 
well as quantum attacks.

• The National Institute of Standards and Technology (NIST), US, started a competition in 2016 with a motive to update 
their standards to include post-quantum cryptography.
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Introduction

• All the submissions to the NIST PQC competition belong to one of the families:

– Lattice-based cryptography

– Code-based cryptography

– Isogeny-based cryptography

– Hash-based cryptography

– Multivariate cryptography
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Introduction

NTRU

• NTRU is a post-quantum lattice-based cryptosystem that made its way to the third round of the NIST competition.

• The first version of NTRU[HPS96] as introduced in Crypto 1996.

• NTRU is now recognized as a hard problem in cryptography rather than a unique cryptosystem that can be extended to 
different algebraic structures.

[HPS96] Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: A ring-based public key cryptosystem. In: International Algorithmic Number Theory Symposium, Berlin, Heidelberg, pp. 267–288 (1996).
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Introduction

NTRU Problem

Definition: Let 𝑁 be a prime, 𝑞 be a positive integer, and 𝑓, 𝑔 ∈
ℤ[𝑥]

𝑥𝑁−1
be two polynomials with small coefficients (mostly 

ternary) such that 𝑓 is invertible modulo 𝑞. 

Private key. The pair (𝑓, 𝑔) forms the secret key.

Public Key. The element  ℎ = 𝑓−1 ∗ 𝑔 𝑚𝑜𝑑 𝑞 ∈
ℤ𝑞[𝑥]

𝑥𝑁−1
is the public key. 

NTRU Problem. Given the public parameters and the public key ℎ, the NTRU problem asks to find the
private key or its rotations (𝑥𝑖 ∗ 𝑓, 𝑥𝑖 ∗ 𝑔) for 𝑖 ∈ 0,1, … , 𝑁 − 1 .
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Introduction

Context

• The design flexibility in NTRU has resulted in many variants of NTRU in literature.

• Some of them are introduced with a motivation to improve the performance and others to strengthen the cryptosystem 
against possible attacks.

• Although the majority of practical NTRU-like cryptosystems are built over commutative algebras, the use of 
noncommutative algebraic structure has been endorsed as a promising direction to generalize NTRU in order to avoid 
certain attacks.
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Introduction

Context

Why noncommutativity?

• When Coppersmith and Shamir[CS97] introduced their lattice attack on NTRU, they suggested that noncommutative 
structures may avoid their attacks and some other attacks that might take benefit of the underlying commutative 
algebra.

[CS97] Coppersmith, D., Shamir, A.: Lattice Attacks on NTRU. In: Advances in Cryptology — EUROCRYPT ’97. pp. 52–61. Springer Berlin Heidelberg, Berlin, Heidelberg (1997).
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Introduction

Context

Why noncommutativity?

• This problem was believed to be as hard as NTRU problem until recently, Kim and Lee[KL23] demonstrated that 
leveraging the commutativity of the underlying ring of polynomials, one can formulate a system of equations that can 
reveal the private key.

[KL23] Kim, J., Lee, C.: A polynomial time algorithm for breaking NTRU encryption with multiple keys. Designs, Codes and Cryptography 91, 2779–2789 (2023).

NTRU-learning problem: Given NTRU public keys ℎ𝑖 = 𝑓−1 ∗ 𝑔𝑖  (𝑚𝑜𝑑 𝑞), for a fixed 𝑓 and a number
 of independently sampled 𝑔𝑖, find 𝑓.
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Introduction

Context

Noncommutative NTRU-like designs

• There are many noncommutative NTRU-like cryptosystems in literature. But most of them are impractical and have issues 
related to security due to lack of analysis.

• BQTRU[BSP18] was claimed to be the fastest noncommutative variant of NTRU. However, we[RKGG24] broke BQTRU and 
hence it no longer is practically secure to be used.

[BSP18] Bagheri, K., Sadeghi, M.R., Panario, D.: A non-commutative cryptosystem based on quaternion algebras. Designs, Codes and Cryptography 86, 2345–2377 (2018).

[RKGG24] Raya A, Kumar V, Gangopadhyay AK, Gangopadhyay S. Giant Does NOT Mean Strong: Cryptanalysis of BQTRU. Cryptology ePrint Archive,Paper 2024/1853; (2024).
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Introduction

Context

Noncommutative NTRU-like designs

• DiTRU[RKG24] built over the dihedral group ring is the only practical noncommutative alternative of NTRU.

• However, DiTRU is susceptible to dimension reduction attacks that reduces the dimension of lattices to be attacked by a 
factor of 2. Consequently, DiTRU is two times slower that NTRU for equivalent security levels.

[RKG24] Raya, A., Kumar, V., Gangopadhyay, S.: DiTRU: A Resurrection of NTRU over Dihedral Group. In: Vaudenay, S., Petit, C. (eds.) Progress in Cryptology - AFRICACRYPT 2024. pp. 349–375. 

Springer Nature Switzerland, Cham (2024).
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Introduction

Our contribution

• The absence of a practical efficient and secure noncommutative version of NTRU motivated us for this work.

• We designed a noncommutative variant of NTRU in the GR-NTRU framework emphasizing on the following practical and 
security aspects:

– Inversion algorithm

– Analysis of lattice and other attacks

– Concrete parameter selection

– Reference implementation
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Group Ring 

Definition: Let 𝐺 = {𝑔𝑖 ∶ 𝑖 = 1,2, … , 𝑁} be a finite group and 𝑅 be a ring. The set of formal sums

 𝑅𝐺 = σ𝑖=1
𝑛 𝛼𝑖𝑔𝑖 ∶ 𝛼𝑖 ∈ 𝑅  

with the component-wise addition and convolution multiplication defines the group ring of 𝐺 over 𝑅.

Definition: Each group ring element 𝑎 = σ𝑖=1
𝑛 𝛼𝑖𝑔𝑖 ∈ 𝑅𝐺 can be associated to its unique coefficient vector 𝛼1, 𝛼2, … , 𝛼𝑛 ∈ 𝑅𝑛. 
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Group Ring 

Definition: The 𝑅𝐺-matrix[Hur06] of an element 𝑎 = 𝛼1, 𝛼2, … , 𝛼𝑛 ∈ 𝑅𝐺 is defined as:

𝑀𝑅𝐺 𝑎 =

𝛼𝑔1
−1𝑔1

𝛼𝑔1
−1𝑔2

𝛼𝑔2
−1𝑔1

𝛼𝑔2
−1𝑔2

⋯ 𝛼𝑔1
−1𝑔𝑛

⋯ 𝛼𝑔2
−1𝑔𝑛

⋮ ⋮
𝛼𝑔𝑛

−1𝑔1
𝛼𝑔𝑛

−1𝑔2

⋱ ⋮
… 𝛼𝑔𝑛

−1𝑔𝑛

.

Note: The 𝑅𝐺-matrix of an element belonging to the cyclic group ring is a circulant matrix.

[Hur06] T. Hurley, Group rings and rings of matrices, International Journal of Pure and Applied Mathematics 31 (2006) 319–335.
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Group Ring

Remark: The standard NTRU operates over the truncated ring of polynomials 
ℤ 𝑥

𝑥𝑁−1
. If we let 𝐶𝑁 = 𝑥 ∶ 𝑥𝑁 = 1  to be the 

cyclic group of order 𝑁, then 
ℤ 𝑥

𝑥𝑁−1
 can be viewed as a group ring of 𝐶𝑁 over ℤ, i.e.,

ℤ 𝑥

𝑥𝑁−1
≈ ℤ𝐶𝑁.

In other words, NTRU can be realized as a cryptosystem built over the group ring of cyclic group.
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GR-NTRU and lattice attacks 

Definition: The GR-NTRU/Group Ring NTRU generalizes NTRU by replacing the cyclic group ring ℤ𝑪𝑵 in NTRU with any group 
ring ℤ𝑮 of a finite group 𝑮 and keeping all other procedures the same with a little modification depending on the 
requirements.

Note: In fact, the ring 𝑅 can be chosen to be a Euclidean domain as taken in few NTRU-like designs, for example ETRU[JN15]. 

[JN15] Jarvis, K., Nevins, M.: ETRU: NTRU over the Eisenstein integers. Des. Codes Cryptogr. 74, 219–242 (2015).
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GR-NTRU and lattice attacks 

Lattices and hard problem

Definition: For 𝑚 ≤ 𝑛, let 𝐵 = 𝑏1, 𝑏2, … , 𝑏𝑚 ∈ ℝ𝑚×𝑛 be a matrix whose rows 𝑏𝑖 ∈ ℝ𝑛 are linearly independent vectors. Then, 
the lattice defined by the basis 𝐵 is defined as

𝐿𝐵 = 𝑥𝐵 =  σ𝑖=1
𝑚 𝑥𝑖𝑏𝑖 : 𝑥 = 𝑥1, 𝑥2, … , 𝑥𝑚 ∈ ℤ𝑚 .

𝑏1

𝑏2
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GR-NTRU and lattice attacks 

Lattices and hard problem

Definition: A vector 𝑣 ∈ 𝐿𝐵 − {0} is called the shortest nonzero vector if 

𝑣 = min
𝑤 ∈ 𝐿𝐵−{0}

‖𝑤‖.

The problem of finding such a vector 𝑣 in a lattice is called the Shortest Vector Problem (SVP).
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GR-NTRU and lattice attacks 

• The coefficient vector of the private key (𝑓, 𝑔) or its rotations is one of the shortest vector of the lattice 𝐿ℎ generated by 
the basis matrix

𝑀ℎ =
𝐼𝑁 𝑀𝑅𝐺(ℎ)
0𝑁 𝑞𝐼𝑁

       with high probability. 

• Therefore, attacking the private key is equivalent to solving SVP in a 2|𝐺|-dimensional lattice.

𝐺 × |𝐺| 𝑅𝐺-matrix of the
public key ℎ.
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Our design

• We have designed our variant over the group ring

𝑅𝐺 = ℤ[𝜔](𝐶𝑁 ⋊ 𝐶3) where

       

Definition: Let 𝜔 be the primitive cube root of unity, i.e., 𝜔3 =
1 and 𝜔 ≠ 1. The ring

ℤ 𝜔 = {𝑎 + 𝑏𝜔 ∶ 𝑎, 𝑏 ∈ ℤ}

is called the ring of Eisenstein integers. 

Definition: Let 𝑁 and 𝑡 be positive integers such that 3|𝑁 −
1, 𝑡3 = 1 𝑚𝑜𝑑 𝑁 , 𝑡 ≠ 1 (𝑚𝑜𝑑 𝑁).

𝐶𝑁 ⋊ 𝐶3 = ⟨𝑥, 𝑦 ∶ 𝑥𝑁 = 𝑦3 = 1, 𝑥𝑦 = 𝑦𝑥𝑡⟩

is the semidirect product (noncommutative) of cyclic groups 𝐶𝑁 
and 𝐶3 of order 𝑁 and 3, respectively.
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Our design

Ring of Eisenstein integers

       

• Fast multiplication: 𝑎 + 𝑏𝜔 ∗ 𝑐 + 𝑑𝜔 = 𝑎𝑐 − 𝑏𝑑 + 𝑎𝑐 + 𝑎 − 𝑏 𝑑 − 𝑐 𝜔 needs 3 integer multiplications. 

Therefore, 

− 𝑓 ∗ 𝑔 needs 3𝑛2 multiplication for 𝑓, 𝑔 ∈ ℤ 𝜔 𝑛.
− 𝑓 ∗ 𝑔 needs 4𝑛2 multiplication for 𝑓, 𝑔 ∈ ℤ2𝑛.

gain in efficiency
       by 4/3.
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Our design

Group ring 𝑹(𝑪𝑵 ⋊ 𝑪𝟑)

       

• 𝑅 𝐶𝑁 ⋊ 𝐶3 = {𝛼 𝑥 + 𝑦𝛽 𝑥 + 𝑦2𝛾 𝑥 : 𝛼, 𝛽, 𝛾 ∈ 𝑅𝐶𝑁}.

• Matrix representation: The 𝑅𝐺-matrix of an element 𝑧 ∈ 𝑅(𝐶𝑁 ⋊ 𝐶3) has the form

𝑀𝑅𝐺 𝑧 =

𝑀0 𝑀1 𝑀2

𝑀2 𝑀0 𝑀1

𝑀1 𝑀2 𝑀0

∈ 𝑅3𝑁×3𝑁.
special 3 × 3 block
Circulant structure.
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Our design

Group ring 𝑹(𝑪𝑵 ⋊ 𝑪𝟑)

       

• Units: An element 𝑧 = 𝑢 𝑥 + 𝑦𝑣 𝑥 + 𝑦2𝑤 𝑥  is invertible in 𝑅(𝐶𝑁 ⋊ 𝐶3) iff

det 𝑢, 𝑣, 𝑤 = det

𝑢(𝑥) 𝑤(𝑥𝑡) 𝑣(𝑥𝑡2
)

𝑣(𝑥) 𝑢 𝑥𝑡 𝑤(𝑥𝑡2
)

𝑤(𝑥) 𝑣(𝑥𝑡) 𝑢(𝑥𝑡2
)

 

      is a unit in 𝑅𝐶𝑁.

Note: There already exist algorithms to check and find inverses in the group 𝑅𝐶𝑁 for 𝑅 = ℤ𝑞 where 𝑞 is a 

prime or prime power.
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Our design

More details

• 𝑁: primes number.

     𝑝, 𝑞 ∈ ℤ[𝜔]: prime elements in ℤ[𝜔].

    𝑝 ≪ |𝑞|, 𝑝 = 2 is fixed for our design.

• Private key 𝑓, 𝑔 ∈ ℤ[𝜔](𝐶𝑁 ⋊ 𝐶3) are elements with 2/3rd coefficients from the set 0, ±1, ±𝜔, ±𝜔2  such that 𝑓 is invertible modulo 𝑞.

• The message space consists of elements from ℤ[𝜔](𝐶𝑁 ⋊ 𝐶3) with coefficients from the set 0, ±1, ±𝜔, ±𝜔2 .

• The encryption and decryption are exactly same as NTRU with the modification that operations are now performed over the ring 
ℤ 𝜔 𝐶𝑁 ⋊ 𝐶3 .

Note: The process is entirely free  from decryption failure if 𝑞 > 8𝑁 𝑝 + 2.
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Our design

Key generation

• The key generation involves inverting the elements in the group ring ℤ[𝜔](𝐶𝑁 ⋊ 𝐶3).

• Modifying the inversion algorithms for ℤ𝑞𝐶𝑁, we proposed an efficient constant time inversion algorithm for 
ℤ 𝜔

𝑞
𝐶𝑁. That 

can be used to calculate inverses in ℤ[𝜔](𝐶𝑁 ⋊ 𝐶3).

Inversion in 
ℤ 𝜔

𝑞
𝐶𝑁 needs to perform division in ℤ[𝜔] 

by 𝑞. We have proposed an efficient division method 

for the same. 

Algorithm to find inverse in ℤ[𝜔](𝐶𝑁 ⋊ 𝐶3) 

Division in ℤ[𝜔]
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Our design

Probability of successful decryption

• Allowing negligible decryption failure can help reduce the key sizes.

• We model the probability of successful decryption as

𝑃 𝑁, 𝑞 = 1 − exp −
𝑞 2

8𝜎2

3𝑁

 where 𝜎2 =
17𝑁

3
+

3

8
.

The probability of successful decryption as a function of |𝑞| for 𝑁 = 61,
𝑝 = 2. The curve represents 𝑃 𝑁, 𝑞 , and the crosses represent the ratio
of the successful decryption out of 10,000 randomly generated 
messages for each prime 𝑞.



31

Our design

Security analysis

• Combinatorial search: Secure against combinatorial search attack that cost approximately 
1

3𝑁

6𝑁
3𝑁

62𝑁 operations.

• Overstreched NTRU attack: These attacks exploits the special algebraic structures present in NTRU-like lattices with a very 
large modulus 𝑞 referred to as overstretched.

[DW21] Ducas, L., van Woerden, W.: NTRU Fatigue: How Stretched is Overstretched? In: Advances in Cryptology– ASIACRYPT 2021. pp. 3–32. Springer International Publishing (2021)

The parameter selected for our design
satisfy 𝑞 ≪ 0.004 ⋅ 𝑛2.484.

Note: Ducas and Woerdon[DW21] estimated that fatigue point (that separates 
the over stretched regime from the standard regime) for an NTRU lattice of 
dimension 2𝑛 with modulus 𝑞, the fatigue point is 𝑞 ≈ 0.004 ⋅ 𝑛2.484.
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Our design

Security analysis

• Lattice attacks: Recovering the private key is equivalent to solving SVP in a 12𝑁-dimensional lattice 𝐿𝐻 generated by the 
basis matrix 

3 × 3 block 

Circulant matrix

For the public key h, the ℤ[𝜔](𝐶𝑁 ⋊ 𝐶3)-matrix is a 3𝑁 × 3𝑁 matrix 𝐻 with entries from ℤ[𝜔]. For converting it to an integral 
matrix 𝐇 ∈ ℤ6𝑁×6𝑁 in a such a way that the public key equation 𝑓 ∗ ℎ = 𝑔 (𝑚𝑜𝑑 𝑞) is preserved, we used that fact that every 

element 𝑎 + 𝑏𝜔 can be mapped to its unique vector 𝑎, 𝑏 ∈ ℤ2 and 2 × 2 integer matrix 
𝑎 𝑏

−𝑏 𝑎 − 𝑏
 such that (𝑎 + 𝑏𝜔) ∗ (𝑐 +

𝑑𝜔) can be identified by 𝑎, 𝑏 ∗
𝑐 𝑑

−𝑑 𝑐 − 𝑑
.

𝑀𝐻 =
𝐼6𝑁 𝐇
06𝑁 𝑞𝐼𝑁

  
 

𝐇0 𝐇1 𝐇2

𝐇2 𝐇0 𝐇1

𝐇1 𝐇2 𝐇0
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Our design

Security analysis

• Lattice attacks: 

      Similarly to DiTRU, the special structure of the basis matrix allows lattice dimension reduction attack. 

      We have shown that it is possible (although with rare probability) to decipher the private key by searching for its images 
in three 8𝑁-dimensional lattices.

Note: Theoretically lattice security of our construction is equivalent to standard NTRU over ℤ𝐶𝑁′ where 
𝑁′ ≈ 4𝑁. For 𝑁′≈ 4𝑁, our scheme is only 1.125 times slower than NTRU for equivalent lattice dimensions
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Our design

Security analysis

• Lattice attacks: 

      Benefits over DiTRU

      − DiTRU over dihedral group ring suffers a dimension loss by a factor of 2. But in our case, the dimension is reduced only factor of 1.5

      − This provides a speed up over DiTRU by a factor of 1.7 . The ring of Eisenstein integers further improves the performance.

      −   Further, our scheme is more compact to DiTRU with less memory requirements.
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Our design

Parameters and performance

Parameters for ℤ[𝜔](𝐶𝑁 ⋊ 𝐶3) –NTRU with no decryption failure and negligible decryption failure

𝛽 is the blocksize 
needed by the 
algorithm BKZ to 
find the shortest 
vector in the 
underlying lattices 
estimated using 
2016-estimation.
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Our design

Comparison with NTRU and DiTRU

Performance benchmark (CPUcycles×103) of this work vs. NTRU and DiTRU for Key generation, Encryption, and Decryption 
For messages of equal lengths.

For  𝑁′ ≈ 4𝑁, our 
design is 1.125 times 
slower than NTRU for 
equal security levels. 
However, for the 
selected parameters 
𝑁 < 𝑁′/4. 
Consequently, we can 
see that our design 
shows an 
improvement in 
performance over 
NTRU.
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Our design

Comparison with NTRU and DiTRU

This demonstrates the memory benefits of the proposed scheme as 
the size of the private (sk) and public key (pk) (in bytes) of parameters 
allowing negligible decryption failure for our design are less than 
DiTRU, while are approximately equal to NTRU HPS.

Memory requirements of the considered NTRU variants.
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