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Introduction

e With the possibility of the development of large-scale quantum computers in the near future, there comes a threat to the
security of cryptographic schemes based on hard mathematical problems that can not resist quantum attacks.

* The goal of Post Quantum Cryptography (PQC) is to design cryptographic systems that are secure against both classical as
well as quantum attacks.

* The National Institute of Standards and Technology (NIST), US, started a competition in 2016 with a motive to update
their standards to include post-quantum cryptography.
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Introduction

e All the submissions to the NIST PQC competition belong to one of the families:

— Lattice-based cryptography
— Code-based cryptography

— Isogeny-based cryptography
— Hash-based cryptography

— Multivariate cryptography
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Introduction

NTRU

* NTRU is a post-quantum lattice-based cryptosystem that made its way to the third round of the NIST competition.

* The first version of NTRU[HPS96] as introduced in Crypto 1996.

* NTRU is now recognized as a hard problem in cryptography rather than a unique cryptosystem that can be extended to
different algebraic structures.

[HPS96] Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: A ring-based public key cryptosystem. In: International Algorithmic Number Theory Symposium, Berlin, Heidelberlgfet‘267—288 ilQQ%
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Introduction

NTRU Problem

Definition: Let N be a prime, q be a positive integer, and f, g € (sz\Fi) be two polynomials with small coefficients (mostly

ternary) such that f is invertible modulo q.

Private key. The pair (f, g) forms the secret key.

Public Key. The element h = f~1 x g(mod q) € (f,‘\’,[ﬂ) is the public key.

NTRU Problem. Given the public parameters and the public key h, the NTRU problem asks to find the
private key or its rotations (x! * f,x' * g) fori € {0,1, ..., N — 1}.
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Introduction

Context

* The design flexibility in NTRU has resulted in many variants of NTRU in literature.

 Some of them are introduced with a motivation to improve the performance and others to strengthen the cryptosystem
against possible attacks.

* Although the majority of practical NTRU-like cryptosystems are built over commutative algebras, the use of
noncommutative algebraic structure has been endorsed as a promising direction to generalize NTRU in order to avoid
certain attacks.

IITROORKEE HE N




Introduction

Context

Why noncommutativity?

When Coppersmith and Shamir[CS97] introduced their lattice attack on NTRU, they suggested that noncommutative
structures may avoid their attacks and some other attacks that might take benefit of the underlying commutative
algebra.

[CS97] Coppersmith, D., Shamir, A.: Lattice Attacks on NTRU. In: Advances in Cryptology — EUROCRYPT °97. pp. 52—61. Springer Berlin Heidelberg, Berlin, Heidelberg (1997).
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Introduction

Context

Why noncommutativity?

NTRU-learning problem: Given NTRU public keys h; = f~1 % g; (mod q), for a fixed f and a number
of independently sampled g;, find f.

* This problem was believed to be as hard as NTRU problem until recently, Kim and Lee[KL23] demonstrated that
leveraging the commutativity of the underlying ring of polynomials, one can formulate a system of equations that can
reveal the private key.

[KL23] Kim, J., Lee, C.: A polynomial time algorithm for breaking NTRU encryption with multiple keys. Designs, Codes and Cryptography 91, 2779-2789 (2023).
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Introduction

Context

Noncommutative NTRU-like designs

 There are many noncommutative NTRU-like cryptosystems in literature. But most of them are impractical and have issues
related to security due to lack of analysis.

* BQTRU[BSP18] was claimed to be the fastest noncommutative variant of NTRU. However, we[RKGG24] broke BQTRU and
hence it no longer is practically secure to be used.

[BSP18] Bagheri, K., Sadeghi, M.R., Panario, D.: A non-commutative cryptosystem based on quaternion algebras. Designs, Codes and Cryptography 86, 2345-2377 (2018).
[RKGG24] Raya A, Kumar V, Gangopadhyay AK, Gangopadhyay S. Giant Does NOT Mean Strong: Cryptanalysis of BQTRU. Cryptology ePrint Archive,Paper 2024/1853; (2024).
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Introduction

Context

Noncommutative NTRU-like designs

 DIiTRU[RKG24] built over the dihedral group ring is the only practical noncommutative alternative of NTRU.

 However, DiTRU is susceptible to dimension reduction attacks that reduces the dimension of lattices to be attacked by a
factor of 2. Consequently, DiTRU is two times slower that NTRU for equivalent security levels.

[RKG24] Raya, A., Kumar, V., Gangopadhyay, S.: DiTRU: A Resurrection of NTRU over Dihedral Group. In: Vaudenay, S., Petit, C. (eds.) Progress in Cryptology - AFRICACRYPT 2024. pp. 349-375.
Springer Nature Switzerland, Cham (2024).
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Introduction

Our contribution

 The absence of a practical efficient and secure noncommutative version of NTRU motivated us for this work.

We designed a noncommutative variant of NTRU in the GR-NTRU framework emphasizing on the following practical and
security aspects:

— Inversion algorithm

— Analysis of lattice and other attacks
— Concrete parameter selection

— Reference implementation
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Group Ring

Definition: Let G = {g; : i = 1,2, ..., N} be a finite group and R be a ring. The set of formal sums
RG ={¥i-12;9; : @; ER}

with the component-wise addition and convolution multiplication defines the group ring of G over R.

Definition: Each group ring element a = Y}, @;9; € RG can be associated to its unique coefficient vector (a4, a5, ..., @) € R™.
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Group Ring

Definition: The RG-matrix[Hur06] of an element a = (a4, a5, ..., ;) € RG is defined as:

Xgitgr %gtlg, 7 %grlgn

a -1 a -1 a -1
_ 92 91 9292 92 "9n

Mge (a) = : : . :
Xgalgr  Ygntg, = %gilgn

Note: The RG-matrix of an element belonging to the cyclic group ring is a circulant matrix.

[Hur06] T. Hurley, Group rings and rings of matrices, International Journal of Pure and Applied Mathematics 31 (2006) 319-335.
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Group Ring

Remark: The standard NTRU operates over the truncated ring of polynomials Zx if we let Cy = {x : x¥N = 1) to be the

]
(N -1)
Z[x]

cyclic group of order N, then N1} can be viewed as a group ring of Cy over Z, i.e.,

=~ ZCN

In other words, NTRU can be realized as a cryptosystem built over the group ring of cyclic group.
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GR-NTRU and lattice attacks

Definition: The GR-NTRU/Group Ring NTRU generalizes NTRU by replacing the cyclic group ring ZCp in NTRU with any group
ring ZG of a finite group G and keeping all other procedures the same with a little modification depending on the
requirements.

Note: In fact, the ring R can be chosen to be a Euclidean domain as taken in few NTRU-like designs, for example ETRU[JN15].

[IN15] Jarvis, K., Nevins, M.: ETRU: NTRU over the Eisenstein integers. Des. Codes Cryptogr. 74, 219-242 (2015).
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Lattices and hard problem

[by, by, ..., b, ] € R™*™ be a matrix whose rows b; € R™ are linearly independent vectors. Then,

Form <n,letB

inition

Def

the lattice defined by the basis B is defined as

x = (X1,%X5, ., Xpy) € LM}

ibi:

m
i=1X

xB = X

Q
~J
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GR-NTRU and lattice attacks

Lattices and hard problem

Definition: A vector v € Lz — {0} is called the shortest nonzero vector if

Y[l = min wll.
vl = min |lw]

The problem of finding such a vector v in a lattice is called the Shortest Vector Problem (SVP).

IITROORKEE HE N




GR-NTRU and lattice attacks

The coefficient vector of the private key (f, g) or its rotations is one of the shortest vector of the lattice L, generated by

the basis matrix
Iy |My-(h |G| X |G| RG-matrix of the
My = ( . @— public key h.
Oy qin

with high probability.

Therefore, attacking the private key is equivalent to solving SVP in a 2|G|-dimensional lattice.
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Our design

* We have designed our variant over the group ring

RG = Z|w](Cy > C3) where

Definition: Let N and t be positive integers such that 3|N —

o ege . . ey . . 3 —
Definition: Let w be the primitive cube root of unity, i.e., w 1,63 = 1 (mod N),t % 1 (mod N).

1land w # 1. Thering
— N — 43 — _ t

Zlw] = {a + bw : a,b € Z} Cyx¥CG=(xy:x" =y>=1Lxy=yx")

is the semidirect product (honcommutative) of cyclic groups Cy

is called the ring of Eisenstein integers. and C; of order N and 3, respectively.
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Our design

Ring of Eisenstein integers

* Fast multiplication: (a + bw) * (¢ + dw) = ac — bd + (ac + (a—b)(d - c))a) needs 3 integer multiplications.

Therefore,

— f * g needs 3n? multiplication for f,g € Zlw]™
— f * g needs 4n? multiplication for f, g € Z*".

— gain in efficiency
by 4/3.
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Our design

Group ring R(Cy % C3)

* R(CNNCB) ={a(x)+y,8(x)+y2y(x):a’,ﬁ,)/ERCN}.

* Matrix representation: The RG-matrix of an element z € R(Cy % C3) has the form

Mo My M, special 3 x 3 block
M (Z) =| M M M € R3NX3N g
RG = 2 0 1 . Circulant structure.
M, M, M,
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Our design

Group ring R(Cy % C3)

« Units: An element z = u(x) + yv(x) + y?w(x) is invertible in R(Cy X C3) iff

u(x) wb) vt
det(u,v,w) = det| v(x) u(x) w(t)

w(x) v(xt)  u@xt)

isaunitin RCy.

Note: There already exist algorithms to check and find inverses in the group RCy for R = Z, where g is a
prime or prime power.
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Our design

More details

* N:primes number.
p,q € Z[w]: prime elements in Z[w].
|p| < |q|, p = 2 is fixed for our design.

Private key f, g € Z[w](Cy X C3) are elements with 2/3 coefficients from the set {0, +1, +w, +w?} such that f is invertible modulo g.

The message space consists of elements from Z[w](Cy X C3) with coefficients from the set {0, +1, +w, +w?}.

The encryption and decryption are exactly same as NTRU with the modification that operations are now performed over the ring

Note: The process is entirely free from decryption failure if |g| > 8N|p| + 2.
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Our design

Key generation

* The key generation involves inverting the elements in the group ring Z[w](Cy % C3).

Z|w]

* Modifying the inversion algorithms for Z,Cy, we proposed an efficient constant time inversion algorithm for vy Cy. That
can be used to calculate inverses in Z[w](Cy > C3).

Input: z = u(z) + yv(z) + y*w(z) € Ry

Output: 27" = a(z) + yB(x) + y*y(x) € Ry as inverse of f, or a failure Z[w]
1 d(z) « det(u, v, w) Inversion in ey Cy needs to perform division in Z[w]
2 inv(z), found + find-inverse-of-d(x)—in-%%CN m==) | by g. We have proposed an efficient division method
3 if not found then return failure for the same.
4 a(x) + inv(z) (u(mt)u(xtg) - v(:ct)w(xtg)) /* product in %ON */
5 f(z) + inv(zx) * (w(:c)w(:ctQ) — v(m)u(mtg)) /* product in %ON‘ */ 1

: ty t . Zw] Input: a=a+ bw € Z[w], and an element g = g + Ow € Z[w].

6 7(x) « inv(@) * (v(z)v(z) - wiz)u(z")) /* product in <¢> On */ Output: 3 € Z[w| such that o = rq + 3 where r € Z[w] is nearest to ¢~ 'a.

7 return z ' = o(z) + yB(x) + y*v(2)

Algorithm to find inverse in Z[w](Cy = C3)

Gk W =

x=ua (mod q), y=>b (mod q), X =2z, Y =2y

ife+y>q X >y, Y >zthen return = (z—q)+ (y — q)w
if X —y>gq, Y <zthen return = (r —q)+ yw

ifY —2>¢q, X <ythen return =+ (y — qw

else return =z + yw

Division in Z[w] IITROORKEE BB H



Our design

Probability of successful decryption

e Allowing negligible decryption failure can help reduce the key sizes.

*  We model the probability of successful decryption as

3N
_ Iqlz)) 5 17N | 3
P(N,q) = (1 exp( oo where g° = 5 T o
N=6lp=2

1.0 1
S 0.9 4
% 0.8 1
8 074 The probability of successful decryption as a function of |g| for N = 61,
% 0.6 1 p = 2. The curve represents P(N, q), and the crosses represent the ratio
g 0.5 of the successful decryption out of 10,000 randomly generated
w 0.4 messages for each prime q.
203
E 0.2 1
[=]
£ 0.1

0.0 1
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Our design

Security analysis

. . . : . . 1
 Combinatorial search: Secure against combinatorial search attack that cost approximately \/— (6N

e 3N) 62N operations.

* Overstreched NTRU attack: These attacks exploits the special algebraic structures present in NTRU-like lattices with a very

large modulus g referred to as overstretched.

Note: Ducas and Woerdon[DW21] estimated that fatigue point (that separates
the over stretched regime from the standard regime) for an NTRU lattice of
dimension 2n with modulus g, the fatigue point is g = 0.004 - n2484,

The parameter selected for our design

satisfy |q| < 0.004 - n?484,

[DW21] Ducas, L., van Woerden, W.: NTRU Fatigue: How Stretched is Overstretched? In: Advances in Cryptology— ASIACRYPT 2021. pp. 3—32. Springer International Publishing (2021)
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Our design

Security analysis

e Lattice attacks: Recovering the private key is equivalent to solving SVP in a 12N-dimensional lattice Ly generated by the

basis matrix
I H 3 % 3 block HO Hl H2
M — (O6N I ) Circulant matrix Hz HO Hl
6N (In H, H, H,

For the public key h, the Z[w](Cy > C3)-matrixis a 3N X 3N matrix H with entries from Z[w]. For converting it to an integral
matrix H € Z%V*6" in a such a way that the public key equation f x h = g (mod q) is preserved, we used that fact that every

element a + bw can be mapped to its unique vector (a, b) € Z? and 2 X 2 integer matrix (—ab 4 E b) such that (a + bw) * (¢ +

dw) can be identified by (a, b) * (—Cd c il d)'
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Our design

Security analysis

e Lattice attacks:

Similarly to DiTRU, the special structure of the basis matrix allows lattice dimension reduction attack.

We have shown that it is possible (although with rare probability) to decipher the private key by searching for its images
in three 8N-dimensional lattices.

Note: Theoretically lattice security of our construction is equivalent to standard NTRU over ZC,+ where
N' =~ 4N. For N'~ 4N, our scheme is only 1.125 times slower than NTRU for equivalent lattice dimensions
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Our design

Security analysis

e Lattice attacks:

Benefits over DiTRU

— DIiTRU over dihedral group ring suffers a dimension loss by a factor of 2. But in our case, the dimension is reduced only factor of 1.5
— This provides a speed up over DiTRU by a factor of 1.7 . The ring of Eisenstein integers further improves the performance.

— Further, our scheme is more compact to DiTRU with less memory requirements.
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Our design

Parameters and performance

No decryption failure

Neglible decryption failure

Security level I

IT1

V I

II1

B is the blocksize
\Y needed by the

algorithm BKZ to

(N, q,p) (127,2039,2) (181,2903,2) (241, 3863,2) (109,701,2) (157,1013,2) (211,1361,2) [RiChO o n:

sk (bytes) 153 218 290 131 189 254 vector in the
pk (bytes) 1143 1629 2350 818 1296 1741 IEIEE (EiafEss
. » . . . estimated using
BK;% . 461 664 890 464 663 886 2016-estimation.
( ) 134 193 209 135 193 258
[classical]
BKZ(S) 122 175 235 122 175 234
[quantum]
Comb 505 719 957 433 624 838
Dec failure 2135 g~ 199 2269
CPU cycles x10°
KeyGen 38 163 72 545 131 162 27 498 o8 308 103 094
Enc 6692 11442 20452 4907 9878 16313
Dec 12125 21 308 38147 8712 18109 30619

Parameters for Z[w](CN > C3) —NTRU with no decryption failure and negligible decryption failure
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Our design

Comparison with NTRU and DiTRU
NTRU HPS (N, q,p= 3) This work (N,q,p = 2) Ratio

(587,2048) (863,2048) (1109,4096) (109, 701) (157,1013) (211,1361)  (ry,ro,73)  (RoAAaAcl

design is 1.125 times

Gen: 62 311 146 706 224 363 27498 H& als 103094 (2.27,2.52,2.18) [EEIERUEURNIVAC]
equal security levels.

Enc: 3132799 9105932 19790178 2772310 7569493 16294397 (1.13,1.20,1.21) PR eaar

selected parameters

Dec: 5800643 17201618 37829256 4988320 13965567 30569442 (1.16,1.23,1.24) N < N'/4.

Consequently, we can

DiTRU (N, q,p= 3) see that our design

shows an
improvement in

(541,2048) (797,4096) (1039,4096) (109, 701) (157,1013) (211,1361)  (r1,r2,73)  [HtiirL e
Gen: 84756 189770 308543 27498 58308 103094 (3.08,3.05,2.99) “HEE
Enc: 9777811 29658528 66558364 5002057 14373555 30551756 (1.92,2.06,2.19)
Dec: 18682243 57320287 120664570 9180125 26540407 57287299 (2.04,2.16,2.26)

Performance benchmark (CPUcyclesx103) of this work vs. NTRU and DiTRU for Key generation, Encryption, and Decryption
For messages of equal lengths. IITROORKEE BB H




Our design

Comparison with NTRU and DiTRU

NTRU HPS DiTRU Our design
This demonstrates the memory benefits of the proposed scheme as
the size of the private (sk) and public key (pk) (in bytes) of parameters
Level sk pk sk pk sk pk allowing negligible decryption failure for our design are less than
DIiTRU, while are approximately equal to NTRU HPS.
1 118 808 217 1488 131 818

IT1 173 1187 319 2391 189 1296
A% 221 1664 416 3116 254 1741

Memory requirements of the considered NTRU variants.

IITROORKEE HE N



References

[HPS96]

[Gen01]

[RKG24]

[YDS15]

[Hur06]

[JN15]

[KRGG23]

[KL23]

[BSP18]

[RKGG]

[CS97]

Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: A ring-based public key cryptosystem. In: International Algorithmic Number Theory Symposium, Berlin, Heidelberg, pp. 267-
288 (1996).

C. Gentry, Key Recovery and Message Attacks on NTRU-Composite, in: B. Pfitzmann (Ed.), Advances in Cryptology — EUROCRYPT 2001, Springer Berlin Heidelberg, Berlin,
Heidelberg, 2001, pp. 182-194.

A. Raya, V. Kumar, S. Gangopadhyay, DiTRU: A resurrection of NTRU over dihedral group, in: S. Vaudenay, C. Petit (Eds.), Progress in Cryptology - AFRICACRYPT 2024,
Springer Nature Switzerland, 2024,pp. 349-375.

T. Yasuda, X. Dahan, K. Sakurai, Characterizing NTRU-variants using group ring and evaluating their lattice security, IACR Cryptol. ePrint Arch. (2015).
T. Hurley, Group rings and rings of matrices, International Journal of Pure and Applied Mathematics 31 (2006) 319-335.
Jarvis, K., Nevins, M.: ETRU: NTRU over the Eisenstein integers. Des. Codes Cryptogr. 74, 219-242 (2015).

V. Kumar, A. Raya, S. Gangopadhyay, A. K. Gangopadhyay, Lattice attack on group ring NTRU: The case of the dihedral group, https://doi.org/10.48550/arXiv.2309.08304
(2023).

Kim, J., Lee, C.: A polynomial time algorithm for breaking NTRU encryption with multiple keys. Designs, Codes and Cryptography 91, 2779-2789 (2023).
Bagheri, K., Sadeghi, M.R., Panario, D.: A non-commutative cryptosystem based on quaternion algebras. Designs, Codes and Cryptography 86, 2345-2377 (2018).
Raya A, Kumar V, Gangopadhyay AK, Gangopadhyay S. Giant Does NOT Mean Strong: Cryptanalysis of BQTRU. Cryptology ePrint Archive,Paper 2024/1853; (2024).

Coppersmith, D., Shamir, A.: Lattice Attacks on NTRU. In: Advances in Cryptology — EUROCRYPT ’97. pp. 52—-61. Springer Berlin Heidelberg, Berlin, Heidelberg (1997).
PP YPEOToBY PP Pring 8 B P ROURKEE m






Questions?



	Slide 1: An Efficient Noncommutative NTRU from Semidirect Product
	Slide 2: Table of contents
	Slide 3: Table of contents
	Slide 4: Introduction
	Slide 5: Introduction
	Slide 6: Introduction
	Slide 7: Introduction
	Slide 8: Introduction
	Slide 9: Introduction
	Slide 10: Introduction
	Slide 11: Introduction
	Slide 12: Introduction
	Slide 13: Introduction
	Slide 14: Table of contents
	Slide 15: Group Ring 
	Slide 16: Group Ring 
	Slide 17: Group Ring
	Slide 18: Table of contents
	Slide 19: GR-NTRU and lattice attacks 
	Slide 20: GR-NTRU and lattice attacks 
	Slide 21: GR-NTRU and lattice attacks 
	Slide 22: GR-NTRU and lattice attacks 
	Slide 23: Table of contents
	Slide 24: Our design
	Slide 25: Our design
	Slide 26: Our design
	Slide 27: Our design
	Slide 28: Our design
	Slide 29: Our design
	Slide 30: Our design
	Slide 31: Our design
	Slide 32: Our design
	Slide 33: Our design
	Slide 34: Our design
	Slide 35: Our design
	Slide 36: Our design
	Slide 37: Our design
	Slide 38: References
	Slide 39
	Slide 40: Questions?

