Revisiting Generic Conversion from Non-Adaptive

to Adaptively Secure IBS: Tightness and an
Extension

Sanjit Chatterjee! Tapas Pandit?

Indian Institute of Science Bangalore

2Plaksha University, Mohali

December 21, 2024

1/19

IBS - Abstract Definition and Security Models

A Quick Review of Generic Adaptive Constructions of IBS

@ Issues in Pan and Wagner's IBS Constructions (PQC 2021)

Addressing the Identified Issues

@ Conclusion

2/19

|dentity-Based Signature (IBS)

Algorithms: Correctness:

@ Setup(k) — (pp, msk) @ V(pp, msk) « Setup(k), Vid € ID,
Vskiq +— KeyGen(pp, msk, id), and
Vm € M, we have

@ KeyGen(pp, msk, id) — skig
@ Sign(pp, m,skig) = o

1 accept ‘ Ver(pp, m, Sign(pp, m, skiq), id) = 1. ‘
0 reject.

@ Ver(pp,m,o,id) = {

3/19

|dentity-Based Signature (IBS)

Algorithms: Correctness:
@ Setup(k) — (pp, msk) @ V(pp, msk) « Setup(k), Vid € ID,
@ KeyGen(pp, msk, id) — skig Vskiq +— KeyGen(pp, msk, id), and

Vm € M, h
@ Sign(pp, m,skiq) — o m we have

1 accept ‘ Ver(pp, m, Sign(pp, m, skiq), id) = 1. ‘
0 reject.

5 &

@ Ver(pp,m,o,id) = {

3/19

|dentity-Based Signature (IBS)

Algorithms: Correctness:

@ Setup(k) — (pp, msk) @ V(pp, msk) « Setup(k), Vid € ID,
Vskiq +— KeyGen(pp, msk, id), and
Vm € M, we have

@ KeyGen(pp, msk, id) — skig
@ Sign(pp, m,skig) = o

1 accept ‘ Ver(pp, m, Sign(pp, m, skiq), id) = 1. ‘
0 reject.

@ Ver(pp,m,o,id) = {

public parameters (pp)

\
7

5 &

A

3/19

|dentity-Based Signature (IBS)

Algorithms: Correctness:

@ Setup(k) — (pp, msk) @ V(pp, msk) « Setup(k), Vid € ID,
Vskiq +— KeyGen(pp, msk, id), and
Vm € M, we have

@ KeyGen(pp, msk, id) — skig
@ Sign(pp, m,skig) = o

1 accept ‘ Ver(pp, m, Sign(pp, m, skiq), id) = 1. ‘
0 reject.

@ Ver(pp,m,o,id) = {

public parameters (pp)

p) key-query on id R\ /
» KeyGen(pp, msk, id) — skiq
R
Ch

A

~

4

<

3/19

|dentity-Based Signature (IBS)

Algorithms: Correctness:

@ Setup(k) — (pp, msk) @ V(pp, msk) « Setup(k), Vid € ID,
Vskiq +— KeyGen(pp, msk, id), and
Vm € M, we have

@ KeyGen(pp, msk, id) — skig
@ Sign(pp, m,skig) = o

. 1 accept i), id) =
® Ver(pp,m, o, id) = {0 rejeth’ ‘Ver(pp7 m, Sign(pp, m, skiq), id) 1.‘

public parameters (pp)

p key-query on id R\ /
» KeyGen(pp, msk, id) — skiq
R
Ch

sign-query on (m, id) A

~

A~

<

A~

Sign(pp, m, skis) — o

~

3/19

|dentity-Based Signature (IBS)

Algorithms: Correctness:
@ Setup(k) — (pp, msk) @ V(pp, msk) « Setup(k), Vid € ID,
@ KeyGen(pp, msk, id) — skig Vskiq +— KeyGen(pp, msk, id), and

Vm € M, h
@ Sign(pp, m,skiq) — o m we have

. 1 accept i), id) =
® Ver(pp,m, o, id) = {0 rejeth’ ‘Ver(pp7 m, Sign(pp, m, skiq), id) 1.‘

public parameters (pp)

p key-query on id R\ /
» KeyGen(pp, msk, id) — skiq
R
Ch

sign-query on (m, id) A

~

A~

<

A~

Sign(pp, m, skis) — o

~

forgey (m*,id*,o™)

A~

3/19

|dentity-Based Signature (IBS)

Algorithms: Correctness:
@ Setup(k) — (pp, msk) @ V(pp, msk) « Setup(k), Vid € ID,
@ KeyGen(pp, msk, id) — skig Vskiq +— KeyGen(pp, msk, id), and

Vm € M, h
@ Sign(pp, m,skiq) — o m we have

. 1 accept i), id) =
® Ver(pp,m, o, id) = {0 rejeth’ ‘Ver(pp7 m, Sign(pp, m, skiq), id) 1.‘

public parameters (pp)

\
7

p key-query on id R\ /
» KeyGen(pp, msk, id) — skiq
R
Ch

sign-query on (m, id) A

A~

<

A~

Sign(pp, m, skis) — o

~

forgey (m*,id*,o™)

Z
<

AdviUF'ID'CMA(n) = Pr [Ver(pp,m*, 0*,id*) = 1A id* & Quey A (m™,id™) & Qs;gn]

@ The scheme is EUF-ID-CMA secure, if for all ppt A, AdvEUF’ID’CMA(/{) is
negligible.
3/19

Algorithms:
@ Setup(r) — (pp, msk)
o KeyGen(pp, msk, id) — skig
@ Sign(pp, m, skig) = o

1 accept

@ Ver(pp,m,o,id) = {O reject

Exp4

1
2
3:
4

a

Quey = 0, Quign = 0, Lk =10

. (pp, msk) < Setup(1*)

(id*, m*, 0*) + AlOsen-Oker} (1% pp)

if id" € Quey or (id",m*) € Qgign

then
return 0

: end if
. return Ver(pp,id*, m*, %)

EUF-ID-CMA: More Details

EUF-ID-CMA
(k):

4/19

Algorithms:

@ Setup(r) — (pp, msk)
o KeyGen(pp, msk, id) — skig
@ Sign(pp, m, skig) = o

1 accept

@ Ver(pp,m,o,id) = {O reject

1 Qpey = 0, Qsign = 0, Ly =10

2: (pp, msk) < Setup(1*)

3: (id*, m*, 0*) ¢ A{Osn O (1% pp)

4: if id" € Quey or (id",m*) € Qgign
then

5: return 0

6: end if

7: return Ver(pp,id*, m*,c*)

Ohey(id):
if id ¢ Quey then
Okey := Quey U {id}
end if
- if (id, skig) € Lg then
return skig
end if
. skig < KeyGen(pp, msk, id)
¢ Loci= Lgc U{(id, skig) }
: return skig

©ONDO AN

Os.gn(ld m):

1: if (id,m) & Qqign then

2 Qsign = Qsign U {(id, m)}
3: end if

4: if (id,skiq) & L then

5: skig < KeyGen(pp, msk, id)
6: Lo := Ly U {(id. Skid)}

7: end if

8: return Sign(pp, m, skig)

EUF-ID-CMA: More Details

EXPEUF—ID—()MA (lﬂ)

4/19

EUF-ID-CMA: More Details

Algorithms: ExpEUP-ID-CMA ().
@ Setup(x) — (pp, msk) L Quey =0, Quign := 0, Lo := 0
) 2: (pp, msk) < Setup(1*)
o KeyGen(pp, msk, id) — skig 3 (id*, m*, 0*) « A{OsnOur} (1% pp)
o Sign(pp, m, skig) — & 4: if id" € Quey or (id",m*) € Qgign
then
. 1 accept 5: return 0
o V ,m,o,id) = R X .
er(pp, m. 0 id) {O reject. 6: end if

7: return Ver(pp,id*, m*,c*)

Oley (id): Osign(id, m):

1: if id ¢ Quey then 1: if (id,m) & Qqign then

2: Okey := Quey U {id} 2 Qsign := Qsign U {(id, m)}
3: end if 3: end if

4: if (id,skia) € Lo then 4: if (id,skiq) & Ls then

5: return skig 5: skig < KeyGen(pp, msk, id)
6: end if 6 Lok = Lo U {(id, skiq) }

7: skig < KeyGen(pp, msk, id) 7: end if

8 Lo := Lo U {(id,skig)} 8: return Sign(pp, m, skig)

9: return skig

@ According to the definition of IBS, a user with identity id generates signatures
on (id, m) for different messages m using the same private key skiq, and this
environment is correctly captured by the EUF-ID-CMA model [BNNO4, LPLL20].

4/19

Non-Adaptive Model: EUF-naCMA

EXpEUF—naCI\/IA(Kl)

1 (ley» Qsign) — A(ln)
2: (pp, msk) < Setup(1*)
3: for id € Qyey do

4 skig < KeyGen(pp, msk, id)

5: Lo := Lo U {Skid}

6: end for

7: for (id, m) € Qgign do

8: o + Sign(pp, m, skiq)

9: Esign = Lsign U {(T}

10: end for

11: (id*, m*, 0*) < A(pp, Lsk, Lsign)

12: if id* € ley or (Id*,m*) S Qsign then
13: return 0

14: end if

15: return Ver(pp,id, m, o)

AdvEUF-naCMA () . pp [EXPEUF—naCMA(n) - 1]

@ The scheme is EUF-naCMA secure, if for all ppt A, AdvEUFmaCMA () js
negligible.
5/19

Generic Constructions of IBS: Adaptive Security

Several generic techniques have been proposed to construct IBS
from different primitives:

@ Bellare, Namprempre, and Neven (2004, 2009) proposed two
generic techniques for IBS:

@ Using digital signatures at two levels: one for generating public
parameters and the master secret key, and another for
generating keys for individual identities.

@ Based on a standard identification scheme combined with a

trapdoor sampleable relation (TSR), followed by the
Fiat-Shamir transform.

6/19

Generic Constructions of IBS: Adaptive Security

Several generic techniques have been proposed to construct IBS
from different primitives:

@ Bellare, Namprempre, and Neven (2004, 2009) proposed two
generic techniques for IBS:

@ Using digital signatures at two levels: one for generating public
parameters and the master secret key, and another for
generating keys for individual identities.

@ Based on a standard identification scheme combined with a

trapdoor sampleable relation (TSR), followed by the
Fiat-Shamir transform.

@ However, these generic approaches lack tight security
reductions.

6/19

Generic Constructions of IBS: Adaptive and Tight Security

@ Note that tightly secure cryptographic schemes offer better
concrete security assurance than their non-tight counterparts.

@ Zhang et al. (2019) proposed a generic construction of IBS
using two digital signatures: one secure in the single-user
setting and the other in the multi-user setting.

o Later, Lee et al. (2020) showed that the same construction
achieves tight security in the EUF-ID-CMA model.

@ However, the construction is not efficient as each signature
includes the underlying public key.

7/19

Generic Constructions of Pan and Wagner (2021)

This work claims to realize tightly EUF-ID-CMA secure IBS schemes
from lattices using a two-stage approach:

@ First, construct an IBS scheme from lattices achieving a tight
reduction in a non-adaptive security model.

@ Then, lift such scheme to tight adaptive security (EUF-ID-CMA)
using two generic approaches:

- One based on chameleon hashes in the standard model (SM).

- The other based on hash functions in the random oracle model
(ROM).

8/19

Generic Constructions of Pan and Wagner (2021)

This work claims to realize tightly EUF-ID-CMA secure IBS schemes
from lattices using a two-stage approach:

@ First, construct an IBS scheme from lattices achieving a tight
reduction in a non-adaptive security model.

@ Then, lift such scheme to tight adaptive security (EUF-ID-CMA)
using two generic approaches:

- One based on chameleon hashes in the standard model (SM).

- The other based on hash functions in the random oracle model
(ROM).

8/19

Generic Constructions of Pan and Wagner (2021)

This work claims to realize tightly EUF-ID-CMA secure IBS schemes
from lattices using a two-stage approach:

@ First, construct an IBS scheme from lattices achieving a tight
reduction in a non-adaptive security model.

@ Then, lift such scheme to tight adaptive security (EUF-ID-CMA)
using two generic approaches:

- One based on chameleon hashes in the standard model (SM).

- The other based on hash functions in the random oracle model
(ROM).

Note: The above result has recently been extended (SPMC-ACNS23) to
the QROM.

8/19

Issues in Adaptive Model of PW21

EUF-ID-CMA-PW .
Exp4 (): Oley(id):

1: ley = ®7 Qsign =10
2: (pp, msk) < Setup(1%)

3: (id*, m*, 0*) < AlOseOrer} (1% pp)

4 if id* € Quey or (id*,m*) € Qgign then | Osign(id, m):
5.

6

7

1: ley = ley U {Id}
2: return KeyGen(pp, msk, id)

: return 0 L Qgign = Qsign U {(id, m)}
. end if

2: skig < KeyGen(pp, msk, id)
. return Ver(pp,id*, m*, o*)

3: return Sign(pp, m, skig)

9/19

Issues in Adaptive Model of PW21

EUF-ID-CMA-PW .
Exp4 (): Oley(id):

1: ley = ®7 Qsign =10
2: (pp, msk) < Setup(1%)

3: (id*, m*, 0*) < AlOseOrer} (1% pp)

4 if id* € Quey or (id*,m*) € Qgign then | Osign(id, m):
5.

6

7

1: ley = ley U {Id}
2: return KeyGen(pp, msk, id)

: return 0 L Qsign := Qsign U {(id, m)}
: end if

2: skig < KeyGen(pp, msk, id)
. return Ver(pp,id*, m*, o*)

3: return Sign(pp, m, skig)

Issue in EUF-ID-CMA-PW

@ For answering two (or more) signing queries on the same identity but for
different messages, a fresh key is generated each time.

@ When A makes a sign query followed by a key query on the same identity, the
returned signing key is different from the one used to generate the signature.

9/19

Issues in Adaptive Model of PW21

EUF-ID-CMA-PW .
Exp4 (): Oley(id):

1: ley = ®7 Qsign =10
2: (pp, msk) < Setup(1%)

3: (id*, m*, 0*) < AlOseOrer} (1% pp)

4 if id* € Quey or (id*,m*) € Qgign then | Osign(id, m):
5.

6

7

1: ley = ley U {Id}
2: return KeyGen(pp, msk, id)

: return 0 L Qsign := Qsign U {(id, m)}
: end if

2: skig < KeyGen(pp, msk, id)
. return Ver(pp,id*, m*, o*)

3: return Sign(pp, m, skig)

Issue in EUF-ID-CMA-PW

@ For answering two (or more) signing queries on the same identity but for
different messages, a fresh key is generated each time.

@ When A makes a sign query followed by a key query on the same identity, the
returned signing key is different from the one used to generate the signature.

@ In either case, the security model deviates from the standard EUF-ID-CMA
model and, therefore, does not accurately capture the real protocol environment.

9/19

Reduction Outline of PW21

@ Both reductions are invalid in EUF-ID-CMA, though they remain
valid in their proposed model, EUF-ID-CMA-PW.

@ The issue is illustrated using their chameleon hash-based
construction.

10/19

Reduction Outline of PW21

@ Both reductions are invalid in EUF-ID-CMA, though they remain
valid in their proposed model, EUF-ID-CMA-PW.

@ The issue is illustrated using their chameleon hash-based
construction.

@ Let IBS' = (IBS'.Setup, IBS'.KeyGen, IBS' .Sign, IBS’.Ver) be a
non-adaptively secure primitive identity-based signature scheme with

identity space ZD' and message space M’.

@ Let CHF = (CHGen, CHash, CHColl) be a chameleon hash function.

10/19

Reduction Outline of PW21

@ Both reductions are invalid in EUF-ID-CMA, though they remain
valid in their proposed model, EUF-ID-CMA-PW.

@ The issue is illustrated using their chameleon hash-based
construction.

@ Let IBS' = (IBS'.Setup, IBS'.KeyGen, IBS' .Sign, IBS’.Ver) be a
non-adaptively secure primitive identity-based signature scheme with
identity space ZD' and message space M’.

@ Let CHF = (CHGen, CHash, CHColl) be a chameleon hash function.

@ Let IBS = (IBS.Setup, IBS.KeyGen, IBS.Sign, IBS.Ver) denote the
target IBS scheme constructed using chameleon hash functions and
the primitive IBS scheme IBS’.

10/19

Reduction Outline of PW21 (Cont.)

IBS.Setup(k):

1: (hk,td) < CHGen(k)

2: (pp’, msk’) < IBS'".Setup()

3: pp := (pp’, hk) and msk := msk’
4: return (pp, msk)

IBS.KeyGen(pp, msk, id):

re SaltSp

- id" <= CHash(hk, id; r)

. skigr + IBS".KeyGen(pp’, msk’, id")
o skig := (skig, r)

. return skiy

aBswWN R

IBS.Sign(pp, m, skig):

1: parse skig as skig = (skiq’, r)
2: s ¢= SaltSp

: m’ +— CHash(hk, m; s)

. o’ + IBS'.Sign(pp’, ', skiq’)
s o= (o,r,s)

. return o

og s w

IBS.Ver(pp, id, m, o):

1: parse 0 as o = (o', r,s)

2: id’ « CHash(hk, id; r)

3: m’ < CHash(hk,m; s)

4: return I1BS' . Ver(pp',id’,m’, o)

11/19

Reduction Outline of PW21 (Cont.)

IBS.Setup(k): IBS.Sign(pp, m, skig):

1: (hk,td) < CHGen(k) 1: parse skig as skig = (skiq’, r)
2: (pp’, msk’) < IBS'".Setup()) 2 s SaltSp

3: pp := (pp’, hk) and msk := msk 3: m’ «- CHash(hk,m; s)

4: return (pp, msk) 4: o’ + IBS'.Sign(pp’, m’, skig’)

. 5. 0:=(0',r,s)

IBS.KeyGen(pp, msk, id): 6: return o

Lol SaltSp .

2 id’ « CHash(hk,id;) IBS.Ver(pp, id, m, 0):

3: skig < IBS'.KeyGen(pp’, msk’, id") 1: parse 0 as o = (o', r,s)

4: skig = (skigr, r) 2: id’ « CHash(hk, id; r)

5: return skig 3: m’ + CHash(hk,m; s)

4: return I1BS' . Ver(pp',id’,m’, o)

At the beginning, a simulator S declares Q] = and Q. in the EUF-naCMA
key

sign
game against IBS’ and obtains the corresponding keys and signatures.

@ Specifically, S prepares the i-th entry of Q. as follows: id; = CHash(hk, 0; r/)

sign
and m} = CHash(hk, 0; s/), where r/ and s/ are random salts.

© Let o/ denote the signature that S obtains for (id}, m!) from its challenger.

11/19

Reduction Outline of PW21 (Cont.)

IBS.Setup(k): IBS.Sign(pp, m, skig):

1: (hk,td) < CHGen(k) 1: parse skig as skig = (skiq’, r)
2: (pp’, msk’) < IBS'".Setup() 2 s <L SaltSp

3: pp := (pp’, hk) and msk := msk’ 3: m’ + CHash(hk,m; s)

4: return (pp, msk) 4: o’ < IBS'.Sign(pp’, m’, skig’)

) 5 0:=(d',r,s)

IBS.KeyGen(pp, msk, id): 6 return o

1o SaltSp .

2: id’ « CHash(hk, id; r) IBS.Ver(pp, id, m, 0):

3: skig < IBS'.KeyGen(pp', msk’, id") 1: parse o0 as 0 = (o', r,s)

4: skig == (skigr, r) 2: id" < CHash(hk, id; r)

5: return skig 3: m’ « CHash(hk, m; s)

4: return 1BS’ Ver(pp’,id’,m’, o")

@ Later, when A makes the i-th signature query on some message (id;, m;), S
utilizes the trapdoor td to correctly map (id/, m?’).

@ Specifically, using td, S finds r; and s; such that CHash(hk, id;; r;) = id} and
CHash(hk, m;; s;) = m}, and returns o; = (o7, r;,s;) to A.

@ A similar approach is applicable in preparing Q{(ey and answering key queries.

11/19

Issues in the Reductions of PW21

@ Case I: A makes the /-th and j-th signature queries on the same
identity as (id, m;) and (id, m;):

- As per the protocol, the same secret key skiq has to be used to
generate the two signatures.

- Hence, the same randomizer r must be included as part of the
two returned signatures.

- However, the randomizers are different as the two queries are
respectively mapped to the i-th and j-th elements of Q

/A
sign”

12/19

Issues in the Reductions of PW21

@ Case I: A makes the /-th and j-th signature queries on the same
identity as (id, m;) and (id, m;):

- As per the protocol, the same secret key skiq has to be used to
generate the two signatures.

- Hence, the same randomizer r must be included as part of the
two returned signatures.

- However, the randomizers are different as the two queries are
respectively mapped to the i-th and j-th elements of Qg :
@ S first has to compute 1 = CHColl(hk, td, 0, r;, id) and
r, = CHColl(hk, td, 0, rj, id).

- Clearly, ri # r» with overwhelming probability due to the
property of chameleon hash function.

12/19

Issues in the Reductions of PW21

@ Case II: A first makes a signature query on some identity id,
followed by a key query on id:

- According to the protocol, the secret key returned for the key
query on id must be the same as the one used to respond to
the preceding signature query.

- This implies that the salt component r in both responses must
be identical.

- However, in the reduction presented in [PW21], the two
queries produce different randomizers r.

@ Thus, it violates the actual protocol environment as well as the
standard EUF-ID-CMA model.

13/19

Issues in the Reductions of PW21

@ Case II: A first makes a signature query on some identity id,
followed by a key query on id:

- According to the protocol, the secret key returned for the key
query on id must be the same as the one used to respond to
the preceding signature query.

- This implies that the salt component r in both responses must
be identical.

- However, in the reduction presented in [PW21], the two
queries produce different randomizers r.

@ Thus, it violates the actual protocol environment as well as the
standard EUF-ID-CMA model.

Remark: A similar argument is applicable to the ROM-based reduction
of [PW21].

13/19

Tight Security in a Restrictive Yet Realistic Model

@ We show that a tight reduction is possible in a restricted
version of the standard EUF-ID-CMA model.

@ WModel I: This is the same as the EUF-ID-CMA model,
except that Quey N Qig = 0.

@ We show that both generic constructions of [PW21] achieve
tight security in WModel I.

14 /19

Tight Security in a Restrictive Yet Realistic Model

@ We show that a tight reduction is possible in a restricted
version of the standard EUF-ID-CMA model.

@ WModel I: This is the same as the EUF-ID-CMA model,
except that Quey N Qig = 0.

@ We show that both generic constructions of [PW21] achieve
tight security in WModel I.

o Note that the original reductions from [PW21] cannot go
through this model, even though it appears to be a weak
model.

- For example, if A makes all signature queries with the same
identity, the salt parts r will differ for all the replied signatures
— which is a violation w.r.t WModel I.

- On the other hand, our reductions consider g2 signature calls
in EUM-naCMA against gs signature calls in WModel | to
correctly handle the above scenario.

14 /19

Lifting Reductions from WModel-I to EUF-ID-CMA

WModel I: Oy, N Qig =0 A — EUF-ID-CMA Attacker
C — EUF-naCMA Challenger S — Simulator

15/19

Lifting Reductions from WModel-I to EUF-ID-CMA

WModel I: Oy, N Qig =0 A — EUF-ID-CMA Attacker
C — EUF-naCMA Challenger S — Simulator

Coron's Technique (2000)

ID\ ID,

IDy

15/19

Lifting Reductions from WModel-I to EUF-ID-CMA

WModel I: Oy, N Qig =0 A — EUF-ID-CMA Attacker
C — EUF-naCMA Challenger S — Simulator

Coron's Technique (2000)

IDy

15/19

Lifting Reductions from WModel-I to EUF-ID-CMA

WModel I: Oy, N Qig =0 A — EUF-ID-CMA Attacker
C — EUF-naCMA Challenger S — Simulator

Coron's Technique (2000)

Tshd

IDy

15/19

Lifting Reductions from WModel-I to EUF-ID-CMA

WModel I: Oy, N Qig =0 A — EUF-ID-CMA Attacker
C — EUF-naCMA Challenger S — Simulator

Coron's Technique (2000)

abort

IDy

15/19

Lifting Reductions from WModel-I to EUF-ID-CMA

WModel I: Oy, N Qig =0 A — EUF-ID-CMA Attacker
C — EUF-naCMA Challenger S — Simulator

Coron's Technique (2000)

IDy

15/19

Lifting Reductions from WModel-I to EUF-ID-CMA

WModel I: Oy, N Qig =0 A — EUF-ID-CMA Attacker
C — EUF-naCMA Challenger S — Simulator

/
g

(8] ——Ic]
id

Coron's Technique (2000)

IDy

15/19

Lifting Reductions from WModel-I to EUF-ID-CMA

WModel I: Oy, N Qig =0 A — EUF-ID-CMA Attacker
C — EUF-naCMA Challenger S — Simulator

Coron's Technique (2000)

IDy

15/19

Lifting Reductions from WModel-I to EUF-ID-CMA

WModel I: Oy, N Qig =0 A — EUF-ID-CMA Attacker
C — EUF-naCMA Challenger S — Simulator

Coron's Technique (2000)

id*, m*, o*)
ID,

15/19

Lifting Reductions from WModel-I to EUF-ID-CMA

WModel I: Oy, N Qig =0 A — EUF-ID-CMA Attacker
C — EUF-naCMA Challenger S — Simulator

Coron's Technique (2000)

(id*, m*, o id*, m*, o*)
ID,

15/19

Lifting Reductions from WModel-I to EUF-ID-CMA

WModel I: Oy, N Qig =0 A — EUF-ID-CMA Attacker
C — EUF-naCMA Challenger S — Simulator

Coron's Technique (2000)

15/19

Lifting Reductions from WModel-I to EUF-ID-CMA

WModel I: Oy, N Qig =0 A — EUF-ID-CMA Attacker
C — EUF-naCMA Challenger S — Simulator

Coron's Technique (2000)

15/19

Lifting Reductions from WModel-I to EUF-ID-CMA

WModel I: Oy, N Qig =0 A — EUF-ID-CMA Attacker
C — EUF-naCMA Challenger S — Simulator

Coron's Technique (2000)

AdngMOdel_I(H) > (1 _ /\)qk A 'AdVJEqUF—ID—CMA(H)

15/19

Lifting Reductions from WModel-I to EUF-ID-CMA

WModel I: Oy, N Qig =0 A — EUF-ID-CMA Attacker
C — EUF-naCMA Challenger S — Simulator

Coron's Technique (2000)

AdngMOdel_I(H) > (1 _ /\)qk A 'AdVJEaUF—ID—CMA(H)

(1—X)9 X attains the maxi-
mum value of 1/(e-qx) when

A=1/(1+ qi).

15/19

Lifting Reductions from WModel-I to EUF-ID-CMA

WModel I: Oy, N Qig =0 A — EUF-ID-CMA Attacker
C — EUF-naCMA Challenger S — Simulator

Coron's Technique (2000)

AdngMOdel_I(H) > (1 _ /\)qk A 'AdVJEaUF—ID—CMA(H)

. AdVEUF-ID-CI\/IA(K)
€ qk mum value of 1/(e-qx) when

_ AdvEUF-ID-OMA () A=1/(1+ qx).
ax

(1—X)9 X attains the maxi-

Q

Q

15/19

Why Tight Security of PW21 is unlikely in EUF-ID-CMA?

@ Consider the following two scenarios:

@ A first makes a sign query on some (id, m) followed by a key
query on the same identity id.

@ A is likely to make sign queries on certain identities but not a
follow-up key query.

16 /19

Why Tight Security of PW21 is unlikely in EUF-ID-CMA?

@ Consider the following two scenarios:

@ A first makes a sign query on some (id, m) followed by a key
query on the same identity id.

@ A is likely to make sign queries on certain identities but not a

follow-up key query.

@ Hence, before answering a sign query on (id, m) for which no
preceding key query on id exists, the simulator must somehow
predict whether a key query on id will be made subsequently.

16 /19

Why Tight Security of PW21 is unlikely in EUF-ID-CMA?

@ Consider the following two scenarios:

@ A first makes a sign query on some (id, m) followed by a key
query on the same identity id.

@ A is likely to make sign queries on certain identities but not a
follow-up key query.

@ Hence, before answering a sign query on (id, m) for which no
preceding key query on id exists, the simulator must somehow
predict whether a key query on id will be made subsequently.

@ If the prediction is incorrect, the simulator has to abort, as

otherwise, it will fail to provide a proper simulation of the
EUF-ID-CMA security game.

16 /19

Why Tight Security of PW21 is unlikely in EUF-ID-CMA?

@ Consider the following two scenarios:

@ A first makes a sign query on some (id, m) followed by a key
query on the same identity id.

@ A is likely to make sign queries on certain identities but not a
follow-up key query.

@ Hence, before answering a sign query on (id, m) for which no
preceding key query on id exists, the simulator must somehow
predict whether a key query on id will be made subsequently.

@ If the prediction is incorrect, the simulator has to abort, as
otherwise, it will fail to provide a proper simulation of the

EUF-ID-CMA security game.

@ This entails a degradation in the reduction which is proportional to
either gy or gs.

16 /19

Conclusion

@ Pan and Wagner proposed a generic conversion from
non-adaptive to adaptively secure IBS with a tightness claim.

@ We identified certain gaps in their approach and proposed new
reductions to address these gaps.

e We argued why the technique of [PW21] is unlikely to yield a
tight reduction in the EUF-ID-CMA model.

o Additionally, we proposed a functional extension of the
Pan-Wagner technique, enabling the registration of multiple
devices under the same identity.

17/19

Thank you for your kind attention!

18/19

Research Associate Position in PQC

@ Duration: Initially for one year (extendable by another year)
e Monthly Stipend: 58,000 + 18% HRA

@ Qualification: Ph.D. in Computer Science or Mathematics
with a strong background in Cryptography.

Interested candidates may contact Dr. Tapas Pandit, Assistant
Professor at Plaksha University, Mohali, Punjab.
Contact Email: tapas.pandit@plaksha.edu.in

19/19

