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Identity-Based Signature (IBS)

Algorithms:

Setup(κ)→ (pp,msk)

KeyGen(pp,msk, id)→ skid

Sign(pp,m, skid)→ σ

Ver(pp,m, σ, id) =

{
1 accept

0 reject.

Correctness:

∀(pp,msk)← Setup(κ), ∀id ∈ ID,
∀skid ← KeyGen(pp,msk, id), and
∀m ∈M, we have

Ver(pp,m, Sign(pp,m, skid), id) = 1.

Ch A

public parameters (pp)

forgey (m∗, id∗, σ∗)

AdvEUF-ID-CMA
A (κ) := Pr

[
Ver(pp,m∗, σ∗, id∗) = 1 ∧ id∗ 6∈ Qkey ∧ (m∗, id∗) 6∈ Qsign

]
The scheme is EUF-ID-CMA secure, if for all ppt A, AdvEUF-ID-CMA

A (κ) is
negligible.
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EUF-ID-CMA: More Details

Algorithms:

Setup(κ)→ (pp,msk)

KeyGen(pp,msk, id)→ skid

Sign(pp,m, skid)→ σ

Ver(pp,m, σ, id) =

{
1 accept

0 reject.

ExpEUF-ID-CMA
A (κ):

1: Qkey := ∅,Qsign := ∅,Lsk := ∅
2: (pp,msk)← Setup(1κ)
3: (id∗,m∗, σ∗)← A{Osign,Okey}(1κ, pp)
4: if id∗ ∈ Qkey or (id∗,m∗) ∈ Qsign

then
5: return 0
6: end if
7: return Ver(pp, id∗,m∗, σ∗)

Okey(id):

1: if id 6∈ Qkey then
2: Qkey := Qkey ∪ {id}
3: end if
4: if (id, skid) ∈ Lsk then
5: return skid

6: end if
7: skid ← KeyGen(pp,msk, id)
8: Lsk := Lsk ∪ {(id, skid)}
9: return skid

Osign(id,m):

1: if (id,m) 6∈ Qsign then
2: Qsign := Qsign ∪ {(id,m)}
3: end if
4: if (id, skid) 6∈ Lsk then
5: skid ← KeyGen(pp,msk, id)
6: Lsk := Lsk ∪ {(id, skid)}
7: end if
8: return Sign(pp,m, skid)

According to the definition of IBS, a user with identity id generates signatures
on (id,m) for different messages m using the same private key skid, and this
environment is correctly captured by the EUF-ID-CMA model [BNN04, LPLL20].
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Non-Adaptive Model: EUF-naCMA

ExpEUF-naCMA
A (κ):

1: (Qkey,Qsign)← A(1κ)
2: (pp,msk)← Setup(1κ)
3: for id ∈ Qkey do
4: skid ← KeyGen(pp,msk, id)
5: Lsk := Lsk ∪ {skid}
6: end for
7: for (id,m) ∈ Qsign do
8: σ ← Sign(pp,m, skid)
9: Lsign := Lsign ∪ {σ}

10: end for
11: (id∗,m∗, σ∗)← A(pp,Lsk,Lsign)
12: if id∗ ∈ Qkey or (id∗,m∗) ∈ Qsign then
13: return 0
14: end if
15: return Ver(pp, id,m, σ)

AdvEUF-naCMA
A (κ) := Pr

[
ExpEUF-naCMA
A (κ) = 1

]
The scheme is EUF-naCMA secure, if for all ppt A, AdvEUF-naCMA

A (κ) is
negligible.
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Generic Constructions of IBS: Adaptive Security

Several generic techniques have been proposed to construct IBS
from different primitives:

Bellare, Namprempre, and Neven (2004, 2009) proposed two
generic techniques for IBS:

1 Using digital signatures at two levels: one for generating public
parameters and the master secret key, and another for
generating keys for individual identities.

2 Based on a standard identification scheme combined with a
trapdoor sampleable relation (TSR), followed by the
Fiat-Shamir transform.

However, these generic approaches lack tight security
reductions.
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Generic Constructions of IBS: Adaptive and Tight Security

Note that tightly secure cryptographic schemes offer better
concrete security assurance than their non-tight counterparts.

Zhang et al. (2019) proposed a generic construction of IBS
using two digital signatures: one secure in the single-user
setting and the other in the multi-user setting.

Later, Lee et al. (2020) showed that the same construction
achieves tight security in the EUF-ID-CMA model.

However, the construction is not efficient as each signature
includes the underlying public key.
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Generic Constructions of Pan and Wagner (2021)

This work claims to realize tightly EUF-ID-CMA secure IBS schemes
from lattices using a two-stage approach:

1 First, construct an IBS scheme from lattices achieving a tight
reduction in a non-adaptive security model.

2 Then, lift such scheme to tight adaptive security (EUF-ID-CMA)
using two generic approaches:

- One based on chameleon hashes in the standard model (SM).

- The other based on hash functions in the random oracle model
(ROM).

Note: The above result has recently been extended (SPMC-ACNS23) to

the QROM.
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Issues in Adaptive Model of PW21

ExpEUF-ID-CMA-PW
A (κ):

1: Qkey := ∅,Qsign := ∅
2: (pp,msk)← Setup(1κ)
3: (id∗,m∗, σ∗)← A{Osign,Okey}(1κ, pp)
4: if id∗ ∈ Qkey or (id∗,m∗) ∈ Qsign then
5: return 0
6: end if
7: return Ver(pp, id∗,m∗, σ∗)

Okey(id):

1: Qkey := Qkey ∪ {id}
2: return KeyGen(pp,msk, id)

Osign(id,m):

1: Qsign := Qsign ∪ {(id,m)}
2: skid ← KeyGen(pp,msk, id)
3: return Sign(pp,m, skid)

Issue in EUF-ID-CMA-PW

1 For answering two (or more) signing queries on the same identity but for
different messages, a fresh key is generated each time.

2 When A makes a sign query followed by a key query on the same identity, the
returned signing key is different from the one used to generate the signature.

In either case, the security model deviates from the standard EUF-ID-CMA
model and, therefore, does not accurately capture the real protocol environment.
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Reduction Outline of PW21

Both reductions are invalid in EUF-ID-CMA, though they remain
valid in their proposed model, EUF-ID-CMA-PW.

The issue is illustrated using their chameleon hash-based
construction.

Let IBS′ = (IBS’.Setup, IBS’.KeyGen, IBS’.Sign, IBS’.Ver) be a
non-adaptively secure primitive identity-based signature scheme with
identity space ID′ and message space M′.

Let CHF = (CHGen,CHash,CHColl) be a chameleon hash function.

Let IBS = (IBS.Setup, IBS.KeyGen, IBS.Sign, IBS.Ver) denote the
target IBS scheme constructed using chameleon hash functions and
the primitive IBS scheme IBS′.
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Reduction Outline of PW21 (Cont.)

IBS.Setup(κ):

1: (hk, td)← CHGen(κ)
2: (pp′,msk′)← IBS’.Setup(κ)
3: pp := (pp′, hk) and msk := msk′

4: return (pp,msk)

IBS.KeyGen(pp,msk, id):

1: r
U←− SaltSp

2: id′ ← CHash(hk, id; r)
3: skid′ ← IBS’.KeyGen(pp′,msk′, id′)
4: skid := (skid′ , r)
5: return skid

IBS.Sign(pp,m, skid):

1: parse skid as skid = (skid′ , r)

2: s
U←− SaltSp

3: m′ ← CHash(hk,m; s)
4: σ′ ← IBS’.Sign(pp′,m′, skid′)
5: σ := (σ′, r , s)
6: return σ

IBS.Ver(pp, id,m, σ):

1: parse σ as σ = (σ′, r , s)
2: id′ ← CHash(hk, id; r)
3: m′ ← CHash(hk,m; s)
4: return IBS’.Ver(pp′, id′,m′, σ′)

1 At the beginning, a simulator S declares Q′key and Q′sign in the EUF-naCMA

game against IBS′ and obtains the corresponding keys and signatures.

2 Specifically, S prepares the i-th entry of Q′sign as follows: id′i = CHash(hk, 0; r ′i )

and m′i = CHash(hk, 0; s′i ), where r ′i and s′i are random salts.

3 Let σ′i denote the signature that S obtains for (id′i ,m
′
i ) from its challenger.
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1: parse σ as σ = (σ′, r , s)
2: id′ ← CHash(hk, id; r)
3: m′ ← CHash(hk,m; s)
4: return IBS’.Ver(pp′, id′,m′, σ′)

4 Later, when A makes the i-th signature query on some message (idi ,mi ), S
utilizes the trapdoor td to correctly map (id′i ,m

′
i ).

5 Specifically, using td, S finds ri and si such that CHash(hk, idi ; ri ) = id′i and
CHash(hk,mi ; si ) = m′i , and returns σi = (σ′i , ri , si ) to A.

6 A similar approach is applicable in preparing Q′key and answering key queries.
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Issues in the Reductions of PW21

Case I: A makes the i-th and j-th signature queries on the same
identity as (id,mi ) and (id,mj):

- As per the protocol, the same secret key skid has to be used to
generate the two signatures.

- Hence, the same randomizer r must be included as part of the
two returned signatures.

- However, the randomizers are different as the two queries are
respectively mapped to the i-th and j-th elements of Q′sign:

S first has to compute r1 = CHColl(hk, td, 0, ri , id) and
r2 = CHColl(hk, td, 0, rj , id).

- Clearly, r1 6= r2 with overwhelming probability due to the
property of chameleon hash function.
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Issues in the Reductions of PW21

Case II: A first makes a signature query on some identity îd,
followed by a key query on îd:

- According to the protocol, the secret key returned for the key
query on îd must be the same as the one used to respond to
the preceding signature query.

- This implies that the salt component r in both responses must
be identical.

- However, in the reduction presented in [PW21], the two
queries produce different randomizers r .

Thus, it violates the actual protocol environment as well as the
standard EUF-ID-CMA model.

Remark: A similar argument is applicable to the ROM-based reduction

of [PW21].
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- According to the protocol, the secret key returned for the key
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Tight Security in a Restrictive Yet Realistic Model

We show that a tight reduction is possible in a restricted
version of the standard EUF-ID-CMA model.

WModel I: This is the same as the EUF-ID-CMA model,
except that Qkey ∩Qid = ∅.

We show that both generic constructions of [PW21] achieve
tight security in WModel I.

Note that the original reductions from [PW21] cannot go
through this model, even though it appears to be a weak
model.

- For example, if A makes all signature queries with the same
identity, the salt parts r will differ for all the replied signatures
– which is a violation w.r.t WModel I.

- On the other hand, our reductions consider q2
s signature calls

in EUM-naCMA against qs signature calls in WModel I to
correctly handle the above scenario.

14 / 19



Tight Security in a Restrictive Yet Realistic Model

We show that a tight reduction is possible in a restricted
version of the standard EUF-ID-CMA model.

WModel I: This is the same as the EUF-ID-CMA model,
except that Qkey ∩Qid = ∅.

We show that both generic constructions of [PW21] achieve
tight security in WModel I.

Note that the original reductions from [PW21] cannot go
through this model, even though it appears to be a weak
model.

- For example, if A makes all signature queries with the same
identity, the salt parts r will differ for all the replied signatures
– which is a violation w.r.t WModel I.

- On the other hand, our reductions consider q2
s signature calls

in EUM-naCMA against qs signature calls in WModel I to
correctly handle the above scenario.

14 / 19



Lifting Reductions from WModel-I to EUF-ID-CMA

WModel I: Qkey ∩Qid = ∅ A – EUF-ID-CMA Attacker

C – EUF-naCMA Challenger S – Simulator

Coron’s Technique (2000)

IDλ

ID \ IDλ

KeyGen

id
C

id

skid

id

abort

Sign

(id,m)
CS

id

skid

σ

(id,m)C

(id,m)

σ

AC

(id∗,m∗, σ∗)(id∗,m∗, σ∗)

(id∗,m∗, σ∗)abort

AdvWModel-I
S (κ) ≥ (1− λ)qk · λ · AdvEUF-ID-CMA

A (κ)

≈
1

e · qk
· AdvEUF-ID-CMA

A (κ)

≈
1

qk
· AdvEUF-ID-CMA

A (κ),

(1−λ)qk ·λ attains the maxi-

mum value of 1/(e·qk ) when

λ = 1/(1 + qk ).
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Why Tight Security of PW21 is unlikely in EUF-ID-CMA?

Consider the following two scenarios:

1 A first makes a sign query on some (id,m) followed by a key
query on the same identity id.

2 A is likely to make sign queries on certain identities but not a
follow-up key query.

Hence, before answering a sign query on (id,m) for which no
preceding key query on id exists, the simulator must somehow
predict whether a key query on id will be made subsequently.

If the prediction is incorrect, the simulator has to abort, as
otherwise, it will fail to provide a proper simulation of the
EUF-ID-CMA security game.

This entails a degradation in the reduction which is proportional to
either qk or qs .
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Conclusion

Pan and Wagner proposed a generic conversion from
non-adaptive to adaptively secure IBS with a tightness claim.

We identified certain gaps in their approach and proposed new
reductions to address these gaps.

We argued why the technique of [PW21] is unlikely to yield a
tight reduction in the EUF-ID-CMA model.

Additionally, we proposed a functional extension of the
Pan-Wagner technique, enabling the registration of multiple
devices under the same identity.
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Thank you for your kind attention!
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