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Relevance:

▶ In Eurocrypt 2016, Méaux et. al. proposed a stream cipher FLIP.

▶ Boolean function f used in FLIP restricted to the set
E = {v ∈ IF

n
2 : wH(v) =

n
2
} ⊆ Fn

2.

▶ Q: Does it impact the security analysis of such functions ?
Yes.

▶ "Symmetric bent Boolean functions" over this set behave like a
constant function.

Therefore, studying functions with more robust cryptographic properties over
such subsets is important.



Relevance:

▶ In Eurocrypt 2016, Méaux et. al. proposed a stream cipher FLIP.

▶ Boolean function f used in FLIP restricted to the set
E = {v ∈ IF

n
2 : wH(v) =

n
2
} ⊆ Fn

2.

▶ Q: Does it impact the security analysis of such functions ?
Yes.

▶ "Symmetric bent Boolean functions" over this set behave like a
constant function.

Therefore, studying functions with more robust cryptographic properties over
such subsets is important.



Relevance:

▶ In Eurocrypt 2016, Méaux et. al. proposed a stream cipher FLIP.

▶ Boolean function f used in FLIP restricted to the set
E = {v ∈ IF

n
2 : wH(v) =

n
2
} ⊆ Fn

2.

▶ Q: Does it impact the security analysis of such functions ?
Yes.

▶ "Symmetric bent Boolean functions" over this set behave like a
constant function.

Therefore, studying functions with more robust cryptographic properties over
such subsets is important.



Relevance:

▶ In Eurocrypt 2016, Méaux et. al. proposed a stream cipher FLIP.

▶ Boolean function f used in FLIP restricted to the set
E = {v ∈ IF

n
2 : wH(v) =

n
2
} ⊆ Fn

2.

▶ Q: Does it impact the security analysis of such functions ?
Yes.

▶ "Symmetric bent Boolean functions" over this set behave like a
constant function.

Therefore, studying functions with more robust cryptographic properties over
such subsets is important.



Relevance:

▶ In Eurocrypt 2016, Méaux et. al. proposed a stream cipher FLIP.

▶ Boolean function f used in FLIP restricted to the set
E = {v ∈ IF

n
2 : wH(v) =

n
2
} ⊆ Fn

2.

▶ Q: Does it impact the security analysis of such functions ?
Yes.

▶ "Symmetric bent Boolean functions" over this set behave like a
constant function.

Therefore, studying functions with more robust cryptographic properties over
such subsets is important.



Outline

• Introduction to Boolean function.

• Existing results on direct sum, Motivation and the problem.

• Direct sum of WPB and WAPB.

• Cryptographic properties: Direct Sum.

• Examples of WPB/WAPB using direct sum method.



Boolean Function

A n-variable Boolean function f : IFn
2 to IF2.

Bn : set of all n-variable Boolean functions. Hence, Cardinality of Bn = 22
n

.



Representation of a Boolean Function: Algebraic normal
form (ANF)

Let f ∈ Bn. Then f can be expressed as:

f (x) =
⊕

I⊆{1,2,...,n}

aI (
∏
i∈I

xi )

= a0 +
n∑

i=1

aixi +
∑

1≤i<j≤n

ai,jxixj + · · ·+ a1,2,...,nx1x2 . . . xn

where a0, ai , ai,j , . . . , a1,2,...,n ∈ F2.
This implies, f (x) ∈ F2[x1, x2, . . . , xn]/ < x21 + x1, . . . , x

2
n + xn >.



Boolean Function (cont.).

{1, 2, . . . , n} := [n], and x = (x1, x2, . . . , xn) ∈ IF
n
2.

▶ The Hamming weight of x ∈ IF
n
2 is wH(x) = |{i ∈ [n] : xi ̸= 0}|.

Let E be a family of subsets of IFn
2 i.e. E = {E0,n,E1,n, . . . ,En,n}, where

Ek,n = {x ∈ IF
n
2 : wH(x) = k}.

▶ The support of f , supp(f ) = {x ∈ IF
n
2 : f (x) = 1}. The Hamming

weight of f is wH(f ) = |supp(f )|.

support of f restricted to Ek,n, suppk(f ) = {x ∈ Ek,n : f (x) = 1}.

Hamming weight of f restricted to Ek,n is wk(f ) = |suppk(f )|.
▶ Let f , g ∈ Bn. The Hamming distance between f and g is

dH(f , g) = |{x ∈ Fn
2 : f (x) ̸= g(x)}|.

Hamming distance between f and g over Ek,n,
dk(f , g) = |{x ∈ Ek,n : f (x) ̸= g(x)}|.
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WAPB and WPB Boolean Functions

1. A function f is said to be balanced, if

|{x ∈ IF
n
2 : f (x) = 0}| = |{x ∈ IF

n
2 : f (x) = 1}|.

2. A functions f ∈ Bn is said to be weightwise almost perfectly
balanced (WAPB) if ∀k ∈ [0, n],

wk(f ) =


(nk)
2

if
(
n
k

)
is even,

(nk)±1

2
if
(
n
k

)
is odd.

3. A balanced Boolean function f ∈ Bn is said to be weightwise perfectly
balanced (WPB) if f restricted to Ek,n, is balanced for all
k ∈ [1, n − 1], i.e.,

wk(f ) =

(
n
k

)
2

for all k ∈ [1, n − 1] and, f (0, 0, . . . , 0) ̸= f (1, 1, . . . , 1).
Exist: if n is power of 2 .
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Direct sum

Let f ∈ Bm and g ∈ Bn be two Boolean functions, then the direct sum
h ∈ Bn+m of f and g is de�ned by:

h(x , y) = f (x) + g(y)

for x ∈ IF
m
2 and y ∈ IF

n
2.

▶ wk(h) =
∑k

i=0 wi (f )
((

n
k−i

)
− wk−i (g)

)
+ wk−i (g)

((
m
i

)
− wi (f )

)
▶ h is balanced over Fn+m

2 , if f or g is balanced.

Wf+g (0) =
∑

z=(x,y)∈Fn+m
2

(−1)f (x)+g(y)

=
∑
x∈Fn

2

(−1)f (x) ·
∑
y∈Fm

2

(−1)g(x)

= Wf (0) ·Wg (0) = 0
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Direct sum of WPB functions

Proposition (Carlet, Méaux, Rotella (2017))
Let n = 2l for l ∈ Z. Let h ∈ Bn such that

h(x1, x2, . . . , xn) = g1(x1, x2, . . . , x n
2
) + g2(x n

2
+1, x n

2
+2, . . . , xn).

If g1 and g2 are two WPB Boolean functions, then h is not WPB.

Proposition (Carlet, Méaux, Rotella (2017))
Let f , g ∈ Bn be WPB Boolean functions. Then h ∈ B2n de�ned by

h(x , y) = f (x) + g(y) +
n∏

i=1

xi ,

where x , y ∈ IF
n
2, is a WPB Boolean function.
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Direct sum of WPB functions

Proposition (Zhu, Linya and Su, Sihong (2022))
Let n = n1 + n2 + · · ·+ np for ni being the power of 2 for 1 ≤ i ≤ p and
0 < n1 < n2 < · · · < np.
Let fni ∈ Bni be WPB with fni (0, 0, . . . , 0) = 0, fni (1, 1, . . . , 1) = 1 for
1 ≤ i ≤ p .
Then h ∈ Bn de�ned as

hn(x1, . . . , xn) = fn1(x1, . . . , xn1) + fn2(xn1+1, . . . , xn1+n2) + · · ·

+fnp (xn−np+1, . . . , xn)

is WAPB.



Motivation and Problem :

Q: Is the direct sum of two WAPB Boolean functions WAPB or WPB?



Example
Let f ∈ B3 and g ∈ B5 be two WAPB Boolean functions. Assume that,

w0(f ) =
(30)+1

2
= 1 w0(g) =

(50)+1
2

= 1

w1(f ) =
(31)+1

2
= 2 w1(g) =

(51)+1
2

= 2

w2(f ) =
(32)−1

2
= 1 w2(g) =

(52)
2

= 5

w3(f ) =
(33)−1

2
= 0 w3(g) = 5

w4(g) = 3
w5(g) = 0

The direct sum h ∈ B8 is de�ned by h(x , y) = f (x) + g(y). Hence,
w0(h) = 0

w1(h) = w0(f )

((
5

1

)
− w1(g)

)
+ w1(g)

((
3

0

)
− w0(f )

)
+ w1(f )

((
5

0

)
− w0(g)

)
+ w0(g)

((
3

1

)
− w1(f )

)
= 1(3) + 2(0) + 2(0) + 1(1) = 4 =

(
8
1

)
2

(balanced over E1,8)
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Cont.

Example (Cont.)

w2(h) = w0(f )

((
5

2

)
− w2(g)

)
+ w2(g)

((
3

0

)
− w0(f )

)
+ w1(f )

((
5

1

)
− w1(g)

)
+ w1(g)

((
3

1

)
− w1(f )

)
+ w2(f )

((
5

0

)
− w0(g)

)
+ w0(g)

((
3

0

)
− w0(f )

)
= 1(5) + 5(0) + 2(3) + 2(1) + 1(0) + 1(0) = 13

For h to be balanced over E2,8, w2(h) =
(82)
2

= 14.

Not necessarily a WPB/WAPB.
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Q: Can we construct a WAPB(or, WPB) Boolean function from the
direct sum of two WAPB Boolean functions?



Notations:

• δfk : For k ∈ [0, n], δfk ∈ {−1, 0, 1} is de�ned as δfk = 2wk(f )−
(
n
k

)
(in

case of WPB and WAPB functions).

• x ⪯ y : For x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈ IF
n
2,

y covers x (i.e., x ⪯ y), if xi ≤ yi ,∀i ∈ [1, n].

• Given n ∈ Z+, denote e(n) = {a1, a2, . . . , aw} ⊆ N ∪ {0} if
n = 2a1 + 2a2 + · · ·+ 2aw .
Hence, x ⪯ y i� e(x) ⊆ e(y).



wk(h) : δ
h
k in terms of δfi and δgk−i .

Theorem (Dalai,-, Indocrypt2024)
Let f ∈ Bm, g ∈ Bn be two WAPB Bfs with

wi (f ) =
(mi )+δfi

2
wk−i (g) =

( n
k−i)+δgk−i

2

for i ∈ [0,m] for k − i ∈ [0, n],

where δfi , δ
g
k−i ∈ {−1, 0, 1}.

Let h ∈ Bm+n de�ned as h(x , y) = f (x) + g(y) for x ∈ IF
m
2 and y ∈ IF

n
2.

Then

wk(h) =

(
m+n
k

)
−

∑k
i=0 δ

f
i δ

g
k−i

2
for k ∈ [0,m + n].

• If f , g satis�es
∑k

i=0 δ
f
i δ

g
k−i ∈ {−1, 0, 1} then h is an WAPB Boolean

function.
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Case-I: Direct sum is WAPB.

Theorem (Dalai,-,Indocrypt2024)
Let m, n ∈ Z+ such that e(m) ∩ e(n) = ∅. Let f ∈ Bm and g ∈ Bn be two
WAPB Boolean functions.
Then the direct sum h ∈ Bm+n is a WAPB Boolean function with

δhk =


0 if e(k) ̸⊆ e(m) ∪ e(n) = e(m + n) i.e.,

k ̸⪯ m + n

−δfs δ
g
k−s where e(s) = e(k) ∩ e(m) if e(k) ⊆ e(m) ∪ e(n) = e(m + n)

i.e., k ⪯ m + n.

• Thus this theorem, implies the [Theorem 3] in [Zhu and Su,2022].
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Theorem =⇒ Zhu and Su (2022) WAPB constructions.

• n =
∑p

i=1 ni for ni = 2ai for i ∈ [1, p],

• ∩p
i=1e(ni ) = ϕ,

• e(n) = {a1, a2, . . . , ap} with 0 ≤ a1 < a2 < · · · < ap.

Theorem (Dalai,-,Indocrypt2024)
Let fni ∈ Bni WPB with fni (0, 0, . . . , 0) = 0, fni (1, 1, . . . , 1) = 1 for
1 ≤ i ≤ p.
Then, hn(x1, . . . , xn) = fn1(x1, . . . , xn1) + fn2(xn1+1, . . . , xn1+n2) + · · ·

+fnp (xn−np+1, . . . , xn)

is a WAPB, with wk(hn) =
(nk)+δhnk

2
where

δhnk =

{
−(−1)|e(k)| = −(−1)wH(k) if e(k) ⊆ e(n)

0 if e(k) ̸⊆ e(n),

for k ∈ [0, n].



Case-II: Direct sum is WPB.

Theorem (Dalai,-, Indocrypt2024)
Let m, n ∈ Z+ such that m+ n = 2l for l ∈ Z+ (i.e. e(m)∩ e(n) = {a1} and
e(m) ∪ e(n) = {a1, a1 + 1, . . . , l − 1}).
Let f ∈ Bm and g ∈ Bn, two WAPB. Then h ∈ Bm+n, WPB if there is a
c ∈ {−1, 1} such that

δf0
δfm

= −δg
0

δgn
;

δf
2T1\{a1}

δf
2T1

= c for every T1 ⊆ e(m) with a1 ∈ T1;

δg
2T2\{a1}

δg
2T2

= −c for every T2 ⊆ e(n) with a1 ∈ T2;

δf
2U1

δf
2V1

= −
δg
2V2

δg
2U2

for every k > 0 satisfying e(k) ⊆ (e(m) ∪ e(n)) \ {a1}

where U1 = e(k) ∩ e(m),U2 = e(k) ∩ e(n),
V1 = (U1 \ {s}) ∪ (e(m) ∩ {a1, a1 + 1, . . . , s − 1}) and

V2 = (U2 \ {s}) ∪ (e(n) ∩ {a1, a1 + 1, . . . , s − 1}) with s be the smallest integer in

e(k).



Example I

Example
Consider m = 3 and n = 5. Then e(3) = {1, 0}, e(5) = {2, 0}. So from the
Theorem-9, �nd a c ∈ {−1, 1} such that the following conditions to be
satis�ed by f and g .

i.
δf
0

δf
3

= − δg
0

δg
5

ii.
δf
0

δf
1

=
δf
2

δf
3

= c and
δg
0

δg
1

=
δg
4

δg
5

= −c

iii.
δf
0

δf
3

= − δg
1

δg
4

;
δf
2

δf
1

= − δg
1

δg
0

;
δf
2

δf
1

= − δg
5

δg
4

.

Considering, c = 1, for

δf0 = −1, δf3 = −1 δg0 = 1, δg5 = −1
δf1 = −1, δf2 = −1 δg1 = −1, δg4 = 1.

Conditions i ., ii . and iii . are satis�ed.



Example (Cont.)
Hence,

w0(f ) = 0 w0(g) = 1
w1(f ) = 1 w1(g) = 2
w2(f ) = 1 w2(g) = 5
w3(f ) = 0 w3(g) = 5

w4(g) = 3
w5(g) = 0

The direct sum h(x , y) = f (x) + g(y) for x ∈ F32 and y ∈ F52 is a WPB
Boolean function.



Cryptographic properties of direct sum

• Nonlinearity of f over Fn
2,

NL(f ) = min
g∈An

dH(f , g) = 2n−1 − 1

2
max
a∈Fn

2

|
∑
x∈Fn

2

(−1)f (x)+a·x |

and,
weightwise nonlinearity of f over Ek,n,

NLk(f ) = min
g∈An

dk(f , g) =
|Ek,n|
2

− 1

2
max
a∈IFn

2

|
∑

x∈Ek,n

(−1)f (x)+a·x |

• Algebraic immunity(AI) of f over Fn
2, AI(f ) = min{deg(g) : f (x)g(x) =

0 or (1+ f (x))g(x) = 0∀x ∈ Fn
2 for g(x) ̸= 0 for some x ∈ Fn

2}
and,
Algebraic immunity(AI) of f over Ek,n,
AIk(f ) = min{deg(g) : f (x)g(x) = 0 or (1+ f (x))g(x) = 0∀x ∈
Ek,n for g(x) ̸= 0 for some x ∈ Ek,n}.
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Cryptographic properties of direct sum

Proposition (Carlet, Méaux, Rotella (2017))
f ∈ Bm, g ∈ Bn and h ∈ Bm+n be de�ned as h(x , y) = f (x) + g(y). Then

1. the nonlinearity over Ek,m+n

NLk(h) ≥
k∑

i=0

((
m

i

)
NLk−i (g) +

(
n

k − i

)
NLi (f )− 2NLi (f )NLk−i (g)

)
.



Cryptographic properties of direct sum

Let f ∈ Bm, g ∈ Bn and h ∈ Bm+n be de�ned as h(x , y) = f (x) + g(y) for
x ∈ IF

m
2 and y ∈ IF

n
2. Then

• [1][An Braeken and Bart Preneel, 2005]
max(AI(f ),AI(g)) ≤ AI(h) ≤ min{max{deg(f ), deg(g)},AI(f )+AI(g)}.

• [2][Carlet, Méaux, Rotella (2017)] for all k ≤ min{m, n},

AIk(h) ≥ min
0≤j≤k

{max{AIj(f ),AIk−j(g)}}

.

• For 0 ≤ k ≤ m + n and m ≤ n, then

min
max{0,k−m}≤j≤min{m,k}

{max{AIj(f ),AIk−j(g)}} ≤ AIk(h) ≤ deg(h).
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Construction: WPB/WAPB Boolean function.

Theorem (Dalai,-, Indocrypt2024)
For n = 2l , l ≥ 1, let fn ∈ Bn be de�ned recursively as

fn(x1, . . . , xn) = f n
2
(x1, . . . , x n

2
) + f n

2
(x n

2
+1, . . . , xn) +

n∏
i= n

2
+1

xi , for l ≥ 2 and

f2(x1, x2) = x2. Then

1. fn is WPB.

2. fn(x1, . . . , xn) =
∑
21|i

xi +
∑
22|i

xi−1xi +
∑
23|i

xi−3xi−2xi−1xi + · · ·+ x n
2
+1 · · · xn.

3. NL(fn) = 2n−1 − 1
2
(3

n
2 − 1).

4. AI(fn) ≤ 1+ n
4
.



Construction: WPB/WAPB

De�nition
f ∈ Bn be WAPB with δfi = −δfi−1 for i ∈ [1, n] (i.e., δfi = (−1)iδf0, for
i ∈ [0, n]) is de�ned as an alternating WAPB (AWAPB) Bf.

Lemma (Dalai,-, Indocrypt2024)
Let n = 2l and f , g ∈ Bn−1, AWAPB Bfs (i.e. δfi = −δfi−1) with δfi = δgi for
i ∈ [1, n]. Then h ∈ Bn de�ned as

h(x1, x2, . . . , xn) = xnf (x1, x2, . . . , xn−1) + (1+ xn)g(x1, x2, . . . , xn−1)

is WPB.
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Construction: WPB/WAPB

Let n = 2l ∈ Z+.

Lemma (Dalai,-, Indocrypt2024)
f ∈ Bn−1, AWAPB and g ∈ Bn unbalanced WAPB i.e. δg0 = δgn .
Then direct sum h ∈ B2n−1 is AWAPB for x ∈ IF

n−1
2 , y ∈ IF

n
2.

Corollary (Dalai,-, Indocrypt2024)
Let f ∈ Bn−1, AWAPB Bf and g ∈ Bn, WPB Bf.
Then h ∈ B2n−1 de�ned as

h(x , y) = f (x) + g(y) +
n∏

i=1

yi

for x ∈ IF
n−1
2 , y ∈ IF

n
2 is a AWAPB Bf.
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Example

Example

▶ f1 ∈ B1 s.t. f1(x1) = x1, AWAPB with δf0 = −1 and δf1 = 1.

▶ f = g = f1 in, f2(x1, x2) = x2x1 + (1+ x2)x1 = x1, WPB in B2.

▶ f = f1, g = f2, f3(x1, x2, x3) = x1 + x2 + x2x3, AWAPB in B3.

▶ f (x) = f3(x) and g(x) = f3(Ax) where A : permutation matrix. g is
also AWAPB with δfi = δgi for i ∈ [0, n]. Take,
g(x1, x2, x3) = x1 + x3 + x2x3.

▶ f4(x1, x2, x3, x4) = x4f (x1, x2, x3) + (1+ x4)g(x1, x2, x3) =
x1 + x2 + x2x3 + x2x4 + x3x4, WPB.

▶ f = f3, g = f4 ,
f7(x1, . . . , x7) = f3(x1, x2, x3) + f4(x4, x5, x6, x7) + x4x5x6x7 ∈ B7,
AWAPB.
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Future work:

▶ To study the direct sum h(x , y) = f (x) + g(y), when e(m)∩ e(n) ̸= ϕ.

▶ Improve bound for NLk(h) and AIk(h) for the direct sum construction.
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Questions ?
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