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Relevance:

» In Eurocrypt 2016, Méaux et. al. proposed a stream cipher FLIP.

» Boolean function f used in FLIP restricted to the set
E={vel; :wy(v)=3} CF5.

» Q: Does it impact the security analysis of such functions ?

» "Symmetric bent Boolean functions" over this set behave like a
constant function.

Therefore, studying functions with more robust cryptographic properties over
such subsets is important.
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Boolean Function

A n-variable Boolean function f : IF to IF>.
B, : set of all n-variable Boolean functions. Hence, Cardinality of B, = 2%".



Representation of a Boolean Function: Algebraic normal
form (ANF)

Let f € B,. Then f can be expressed as:

)= @ a][x

IC{1,2,...n} i€l

=ap+ § aixi + § alJXlXJ -+ a1,2,...,nX1X2 ... Xp
1<i<j<n
where ao, dj,djjy---,312,..n € Fs.

This implies, f(x) € Fa[x1, X2, .-, Xn]/ < X2 + X1, ..., X2 + X5 >



Boolean Function (cont.).

{1,2,...,n} :=[n], and x = (x1, x2, ..., x,) € IF3.
» The Hamming weight of x € IF3 is wu(x) = |{i € [n] : x; # 0}].

Let £ be a family of subsets of IF3 i.e. £ ={Eg s, E1n,...,Enn}, where
Ex.n = {x € F5 : wy(x) = k}.
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Boolean Function (cont.).

{1,2,...,n} :=[n], and x = (x1, x2, ..., x,) € IF3.

» The Hamming weight of x € IF3 is wu(x) = |{i € [n] : x; # 0}].
Let £ be a family of subsets of IF3 i.e. £ ={Eg s, E1n,...,Enn}, where
Ex.n = {x € F5 : wy(x) = k}.

» The support of £, supp(f) = {x € IF5 : f(x) = 1}. The Hamming
weight of f is wy(f) = |supp(f)|.
support of f restricted to Ey ,, supp,(f) = {x € Exn: f(x) = 1}.
Hamming weight of f restricted to Ey , is wi(f) = |supp,(f)]-

> Let f,g € B,. The Hamming distance between f and g is

du(f,g) = {x € F3 : f(x) # g(x)}|.
Hamming distance between f and g over Ey ,,

di(f,8) = {x € B F(x) # 8(x)}.
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WAPB and WPB Boolean Functions

1. A function f is said to be balanced, if
Hx € F]: f(x) =0} = [{x € IF; : f(x) =1}].

2. A functions f € B, is said to be weightwise almost perfectly
balanced (WAPB) if Yk € [0, n],

@) v my

AL if is even,

w(f)=1 b, T

W— if (]) is odd.

3. A balanced Boolean function f € B, is said to be weightwise perfectly
balanced (WPB) if f restricted to Ey ,, is balanced for all
kell,n—1],ie.,

for all k € [1,n— 1] and, (0,0,...,0) # f(1,1,...,1).
Exist: if nis power of 2 .



Direct sum

Let f € B, and g € B, be two Boolean functions, then the direct sum
h € B,ym of f and g is defined by:

h(x,y) = f(x) + g(y)

for x e IFy and y € IF5.
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Direct sum

Let f € B, and g € B, be two Boolean functions, then the direct sum
h € B,ym of f and g is defined by:

h(x,y) = f(x) + g(y)

for x e IFy and y € IF5.

> wi(h) = Sowi(F) (%) = wii(8)) +wii(g) ((7) —wi())
» his balanced over ]Fg+'", if f or g is balanced.

Wr1g(0) = Z (—1) I+l

z=(x,y)€Fg+™
— Z(_l)f(x). Z (—1)&™)
xelFg y€Fy

= W(0) - W,(0) =0



Direct sum of WPB functions

Proposition (Carlet, Méaux, Rotella (2017))
Let n=2! for | € Z. Let h € B, such that

h(x1, X2, - -+ xn) = g1(x1, X2, -+ x2) + ga(Xz 41, X242, - -+, Xn).

If g1 and g» are two WPB Boolean functions, then h is not WPB.



Direct sum of WPB functions

Proposition (Carlet, Méaux, Rotella (2017))
Let n=2! for | € Z. Let h € B, such that

h(x1, X2, - -+ xn) = g1(x1, X2, -+ x2) + ga(Xz 41, X242, - -+, Xn).

If g1 and g» are two WPB Boolean functions, then h is not WPB.

Proposition (Carlet, Méaux, Rotella (2017))
Let f,g € B, be WPB Boolean functions. Then h € B,, defined by

h(x,y) = f(x) + &y +Hx,,

where x,y € 75, is a WPB Boolean function.



Direct sum of WPB functions

Proposition (Zhu, Linya and Su, Sihong (2022))

Let n=ny + ny +--- + n, for n; being the power of 2 for 1 <i < p and
O<m<m<- < np.

Let f, € B,, be WPB with £,(0,0,...,0) =0, £,(1,1,...,1) =1 for
1<i<p.

Then h € B,, defined as

ha(X1y oy Xn) = Fay (X1 ooy Xng ) F Foy (Xeg b1y« + s Xingpmg ) + 7+

+fnp(Xn—np+17 s ,X,,)

is WAPB.



Motivation and Problem :

Q: Is the direct sum of two WAPB Boolean functions WAPB or WPB?



Let f € B3 and g € Bs be two WAPB Boolean functions. Assume that,
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Example
Let f € B3 and g € Bs be two WAPB Boolean functions. Assume that,

wo(f) = 29 =1 wo(g) % =1
wi(f) = G = wi(g) = L0 =2
Wg(f) = (2271 =1 Wz(g) = % =5
ws(f) = (32_1 =0 ws(g) =5

wa(g) =3

ws(g) =0

The direct sum h € By is defined by h(x,y) = f(x) + g(y). Hence,
Wo(h) =0



Example (Cont.)
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Q: Can we construct a WAPB(or, WPB) Boolean function from the
direct sum of two WAPB Boolean functions?



Notations:

e 0f : For k €[0,n], 6] € {—1,0,1} is defined as &} = 2w, (f) — () (in
case of WPB and WAPB functions).

o ij: FOVXZ(X17X2w~»Xn)a}/:(}/17}/2»~~~,}’n) G]ng
y covers x (i.e., x X y), if x; < y;,Vie[l,n].

e Given n € Z", denote e(n) = {a1,a2,...,an} C NU{0} if
n:2a1 +232+...+23w_
Hence, x < y iff e(x) C e(y).



wi(h) : 67 in terms of 87 and &% _..

Theorem (Dalai,-, Indocrypt2024)
Let f € B, g € B, be two WAPB Bfs with

™) +6f ")+,
wif) = () =
for i€ [0, m| for k —i € [0,n],

where §f,6¢ . € {-1,0,1}.
Let h € By, defined as h(x,y) = f(x) + g(y) for x e IF and y € IF5.

Then . .
miny Nk sfsg
( k ) 22:’*0 ki for k € [0, m + n].

Wk(h) =



wi(h) : 67 in terms of 87 and &% _..

Theorem (Dalai,-, Indocrypt2024)
Let f € B, g € B, be two WAPB Bfs with

™) +6f ")+,
wif) = () =
for i€ [0, m| for k —i € [0,n],

where §f,6¢ . € {-1,0,1}.
Let h € By, defined as h(x,y) = f(x) + g(y) for x e IF and y € IF5.

Then
(mkﬂ) B Zf'(:o 5f5g

wk(h) = > “~I for k € [0, m + n].

o If £, g satisfies S~ 6768, € {—1,0,1} then h is an WAPB Boolean
function.



Case-I: Direct sum is WAPB.

Theorem (Dalai,-,Indocrypt2024)

Let m,n € Z* such that e(m)Ne(n) =0. Let f € By, and g € B, be two
WAPB Boolean functions.

Then the direct sum h € B, is a WAPB Boolean function with

0 if e(k) € e(m) U e(n) = e(m+ n)
s5h— kZAm+n
g —0f0% __ where e(s) = e(k) N e(m) if e(k) C e(m)Ue(n) = e(m+ n)
ie., k<m+n.



Case-I: Direct sum is WAPB.

Theorem (Dalai,-,Indocrypt2024)

Let m,n € Z* such that e(m)Ne(n) =0. Let f € By, and g € B, be two
WAPB Boolean functions.
Then the direct sum h € B, is a WAPB Boolean function with

0 if e(k) € e(m) U e(n) = e(m+ n)
kAm+n

—0f0% __ where e(s) = e(k) N e(m) if e(k) C e(m)Ue(n) = e(m+ n)
ie., k<m+n.

o Thus this theorem, implies the [Theorem 3] in [Zhu and Su,2022].



Theorem = Zhu and Su (2022) WAPB constructions.

e n=>"%n;for n; =2% for i € [1,p],

® mszle(r'i) = ¢’

o e(n)={ar,a,...,a} with0<a; <ap <--- < ap.
Theorem (Dalai,-,Indocrypt2024)

Let f,, € B,, WPB with f,(0,0,...,0) =0, f,,(1,1,...,1) =1 for
1<i<p.

Then, hp(x1, ... Xn) = foy (X1, oy Xng ) F Frg (Kng b1y« -« s Xngbnp) + <+
H o, (Xn—nyt 15+ - -5 Xn)

n hn
is a WAPB, with wy(h,) = (k)%sk where

s _ {—(—l)le(k)l — (—1)y™®) ife(k) C e(n)
CoL ife(k) & e(n).

for k € [0, n].



Case-1l: Direct sum is WPB.

Theorem (Dalai,-, Indocrypt2024)

Let m,n € Z* such that m+n=2' for | € Z* (i.e. e(m)Ne(n) = {a1} and
e(m)Ue(n) ={a1,a1 +1,...,1 —1}).

Let f € B, and g € B,,, two WAPB. Then h € B, ., WPB if there is a

c € {—1,1} such that

% _ %
o o
6
% = c for every Ty C e(m) with a € Ty;
271
5,
25%{"1} = —c for every T> C e(n) with a1 € T;
2T2
52fU1 5, .
= = % for every k > 0 satisfying e(k) C (e(m) U e(n))\ {a1}
Vi 2U2

where Uy = e(k) N e(m), U2 = e(k) N e(n),

Vi= (Ui \ {s})U(e(m)n{a1,a1+1,...,5—1}) and

Vo= (U2 \ {s})U(e(n)N{a1,a1 +1,...,5 — 1}) with s be the smallest integer in
e(k).



Example |

Example

Consider m =3 and n=15. Then e(3) = {1,0}, e(5) = {2,0}. So from the
Theorem-9, find a ¢ € {—1, 1} such that the following conditions to be
satisfied by f and g.

[ % _ %

i o¢

A A 5 _ o5 _

ii. 6{_6§_cand =5 = ¢
P B S S S
i 5 0 5f 5E 1 of 5k

Considering, ¢ = 1, for

§f=-1,0l=-1 58 =16 = -1
6 =16 =1 68 =—-1,6 =1.

Conditions /., ji. and jii. are satisfied.



Example (Cont.)

Hence,
wo(f) =0 wo(g) =1
wy(f) =1 wi(g) =2
wa(f) =1 wa(g) =5
w3(f) =0 w3(g) =5
wa(g) =3
ws(g) =0

The direct sum h(x,y) = f(x) + g(y) for x € F3 and y € F3 is a WPB
Boolean function.



Cryptographic properties of direct sum

e Nonlinearity of f over [,

NL(f) = min dy(f,g) =2""1 -2 max| Z( 1)f()+ax|

gEeEA, ae]F" o=
and,
weightwise nonlinearity of f over Ey ,,
NL(F) = min di(f.g) = rl = L max | 57 (-1y00e
geA, 2 ae]F"

XeEk n



Cryptographic properties of direct sum

e Nonlinearity of f over [,

NL — __»n—1 __ = x)+a-x

(f) = min du(f,g) =2 gne%fl > (—1) It
x€F}

and,

weightwise nonlinearity of f over Ey ,,

. E 1
NLA(F) = min dh(.) = 62— 3 max | 37 (1)
5 >(EEkn

o Algebraic immunity(Al) of f over F5, Al(f) = min{deg(g) : f(x)g(x) =
0 or (1 + f(x))g(x) = 0Vx € Fj for g(x) # 0 for some x € F}
and,
Algebraic immunity(Al) of f over Ey ,,
Al (f) = min{deg(g) : f(x)g(x) =0or (1+ f(x))g(x) = 0Vx €
Ex,n for g(x) # 0 for some x € Ey p}.



Cryptographic properties of direct sum

Proposition (Carlet, Méaux, Rotella (2017))
feBny g€ B,andhe By, be defined as h(x,y) = f(x) + g(y). Then
1. the nonlinearity over E min

k

NL(h) = 3 (("’) NLe_i(g) + (k " ,.)NL;(f) - 2NL,-(f)NLk_,-(g>) .

i=0



Cryptographic properties of direct sum

Let f € By, g € B, and h € By,1, be defined as h(x,y) = f(x) + g(y) for
x € IF3" and y € IF5. Then
e [1][An Braeken and Bart Preneel, 2005]
max(Al(f), Al(g)) < Al(h) < min{max{deg(f),deg(g)}, Al(f)+Al(g)}.
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x € IF3" and y € IF5. Then

e [1][An Braeken and Bart Preneel, 2005]
max(Al(f), Al(g)) < Al(h) < min{max{deg(f),deg(g)}, Al(f)+Al(g)}.

e [2][Carlet, Méaux, Rotella (2017)] for all k < min{m, n},

Alk(h) = min, {max{A;(F). Alis(g)}}



Cryptographic properties of direct sum

Let f € By, g € B, and h € By,1, be defined as h(x,y) = f(x) + g(y) for
x € IF3" and y € IF5. Then

e [1][An Braeken and Bart Preneel, 2005]
max(Al(f), Al(g)) < Al(h) < min{max{deg(f),deg(g)}, Al(f)+Al(g)}.

e [2][Carlet, Méaux, Rotella (2017)] for all k < min{m, n},

Alk(h) = min, {max{A;(F). Alis(g)}}

e For 0 < k< m-+ nand m< n, then

i ; ; < < .
o min {max{AL(F). Al (8)}) < Alu(h) < deg(h)



Construction: WPB/WAPB Boolean function.

Theorem (Dalai,-, Indocrypt2024)
Forn=2'1>1, let f, € B, be defined recursively as

n

fo(xt, - xn) = fo(xa, ..oy xz) + fa(Xoqa, .00y Xp) + H x;, for | > 2 and

=241
f2(X17X2):X2. Then

1. f, is WPB.

2. f X1,,.., ZX,+ZX, 1)(,—|—Zx, 3Xi_2Xi— 1Xl+"'+Xg+1"'Xn-

21|j 22| 23|
3. NL(fp) =21 —1(32 —1).
4. AI(f,) <1+ 2.



Construction: WPB/WAPB

Definition
f € B, be WAPB with 6 = —6_, for i € [1,n] (i.e., 6T = (—1)/5§, for
i € [0, n]) is defined as an alternating WAPB (AWAPB) Bf.



Construction: WPB/WAPB

Definition
f € B, be WAPB with 6 = —6_, for i € [1,n] (i.e., 6T = (—1)/5§, for
i € [0, n]) is defined as an alternating WAPB (AWAPB) Bf.

Lemma (Dalai,-, Indocrypt2024)
Let n=2"and f,g € B,_1, AWAPB Bfs (i.e. 5 = =61 ) with 6T = 6% for
i €[1,n]. Then h € B, defined as

h(x1, %0,y Xn) = XoF (X1, %2, -+« Xn—1) + (L 4 x0)g(x1, X25 - -+ 5 Xp—1)

is WPB.



Construction: WPB/WAPB

Let n=2' e 7t.

Lemma (Dalai,-, Indocrypt2024)

f € B,_1, AWAPB and g € B,, unbalanced WAPB i.e. §§ = 65.
Then direct sum h € Bo,_y is AWAPB for x ¢ IF5 'y € TF}.



Construction: WPB/WAPB

Let n=2' e 7t.

Lemma (Dalai,-, Indocrypt2024)

f € B,_1, AWAPB and g € B,, unbalanced WAPB i.e. §§ = 65.
Then direct sum h € Bo,_y is AWAPB for x ¢ IF5 'y € TF}.

Corollary (Dalai,-, Indocrypt2024)

Let f € B,_1, AWAPB Bf and g € B,,, WPB Bf.
Then h € Bs,_1 defined as

h(x,y) = f(x)+ &)+ [ v

i=1

for x c Ty~ ',y € IF} is a AWAPB Bf.



Example

Example
> f, € By sit. fi(x1) = x1, AWAPB with 65 = —1 and §] = 1.
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> f, € By sit. fi(x1) = x1, AWAPB with 65 = —1 and §] = 1.
> f=g="in fh(x,x)=xx+(l+x)x1 =x1, WPB in B;.
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Example
> f, € By sit. fi(x1) = x1, AWAPB with 65 = —1 and §] = 1.
> f=g="in fh(x,x)=xx+(l+x)x1 =x1, WPB in B;.
> f=hH,g =" B(x,x,x3)=x +x + xx3, AWAPB in B;.



Example

Example
> f, € By sit. fi(x1) = x1, AWAPB with 65 = —1 and §] = 1.
> f=g="in fh(x,x)=xx+(l+x)x1 =x1, WPB in B;.
> f=hH,g =" B(x,x,x3)=x +x + xx3, AWAPB in B;.

> f(x) = f3(x) and g(x) = 3(Ax) where A : permutation matrix. g is
also AWAPB with 67 = 6% for i € [0, n]. Take,
g(x1, %2, x3) = x1 + X3 + x2X3.



Example

Example

>

>
>
>

fi € By sit. fi(x1) = x;, AWAPB with 6§ = —1 and 6f = 1.
f=g="fin fhix,x)=xx+ (l+x)x1 =x, WPB in B;.
f=h,g="h (x,x,x3)=x +x + x2x3, AWAPB in B;.

f(x) = f3(x) and g(x) = f3(Ax) where A : permutation matrix. g is
also AWAPB with 67 = 6% for i € [0, n]. Take,

g(x1,x2,Xx3) = x1 + x3 + XoX3.

f4(X1,X2,X3,X4) = X4f(X1,X2,X3) + (1 + X4)g(X1,X2,X3) =

X1 + Xo + XoX3 + XoXa + X3Xq, WPB.



Example

Example

>

>
>
>

fi € By sit. fi(x1) = x;, AWAPB with 6§ = —1 and 6f = 1.
f=g="fin fhix,x)=xx+ (l+x)x1 =x, WPB in B;.
f= fl;g = f, f3(X1,X2,X3) =x1 + xo + xox3, AWAPB in B3.
f(x) = f3(x) and g(x) = f3(Ax) where A : permutation matrix. g is
also AWAPB with 67 = 6% for i € [0, n]. Take,

g(x1,Xx2,x3) = X1 + X3 + X0X3.

f4(X1,X2,X3,X4) = X4f(X1,X2,X3) + (1 + X4)g(X1,X2,X3) =

X1 + X2 + X2X3 =+ XoXa + X3X4, WPB

f=hg=",

fr(x1,. .., x7) = f(x1, X2, x3) + fa(xa, X5, X6, X7) + XaxXs X6 X7 € By,
AWAPB.



Future work:

> To study the direct sum h(x,y) = f(x) + g(y), when e(m) N e(n) # ¢.



Future work:

> To study the direct sum h(x,y) = f(x) + g(y), when e(m) N e(n) # ¢.

» Improve bound for NL,(h) and Al (h) for the direct sum construction.



Questions ?
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