DEEP LEARNING-BASED DIFFERENTIAL
DISTINGUISHERS FOR CRYPTOGRAPHIC
SEQUENCES

Amrita Bose, Debranjan Pal, Dipanwita Roy Chowdhury

Department of Computer Science and Engineering,
Indian Institute of Technology Kharagpur

INDOCRYPT 2024, CHENNAI, TaAMIL NADU, INDIA

December 2024

Outline

» Introduction

» A Brief History

» Deep Learning for Sequence Classification

» Neural Distinguishers based on Sequence Classification
» Results and Observation

» Conclusion

Outline

p Introduction

Introduction

Receiver

DECRYPTION

Ciphertext Ciphertext

Plaintext

Plaintext

Introduction

Sender

Receiver
ENCRYPTION DECRYPTION

Ciphertext

Ciphertext

Plaintext _
Plaintext

&
H

i .]

Introduction

« Differential Cryptanalysis:

PLAINTEXT (P) 4[ENCRYPTION]—D CIPHERTEXT (C)

l a l a‘
PLAINTEXT (P") —{ ENCRYPTION]—» CIPHERTEXT (C")

O

r

Introduction

« Differential Cryptanalysis:

PLAINTEXT (P) 4[ENCRYPTION]—D CIPHERTEXT (C)

l a l a‘
PLAINTEXT (P") —{ ENCRYPTION]—» CIPHERTEXT (C")

O

r

e Conventional Method —
relies on Difference Distribution Table (DDT)

Introduction

« Differential Cryptanalysis:

PLAINTEXT (P) 4[ENCRYPTION]—D CIPHERTEXT (C)

l a l a‘
PLAINTEXT (P") —{ ENCRYPTION]—» CIPHERTEXT (C")

O

r

e Conventional Method —
relies on Difference Distribution Table (DDT)

e New Research Direction — utilize deep learning model
to get a distinguisher [Aron Gohr|

PaP= g
(P, Pz)-I:
" l P1 & P:g = {5;!
encryption

(Ch G!)
(Ch CE} CI & Cﬂ]

i

INPUT

P Plaintext
': Ciphertext
OUTPUT dp: Random Difference

dp: Real Difference

Class: Real/ Random

Introduction

o Deep Learning-based Distinguisher

Py @ Dy =or. (Lo,)

Py @ P| = op; (P, P)—p

Key (random)

.

L.

—(Cy.C1)

- (C},C})

Encryption
Oracle

A

U r rounds

Introduction

o Deep Learning-based Distinguisher

Py @ P =og:(Py, P)—

Py @ P = op; (P, P—pm

Key (random)

¢

L.

Encryption —»(Co. C1)

Dracle _ 3 ((:GF Ci)

4

U r rounds

ann }j

Dataset Creation
(Co,C1,Co B Cy,0)

(. Cl,Ch T, 1)

0, 1 are class labels

Introduction

o Deep Learning-based Distinguisher

Train-Test-Validation

e
Key (random) [rrrl ik ||||]|]I'|}] (_)

) Dataset Creation Iﬁ

Po® Py = bri(Po, PO provoniion 2 (Co.C1) (Co,C1,Co @ C1,0) -] a
4 R Y Oracle el "R 2I B C’ .1 &
P} ® P} = 6p; (P}, P))—p —-(Cy, C1) (Co- C1. G @ 1. D) o

0, 1 are class labels

U r rounds Deep Learning Model

[DISTINGUISHER]

What is the purpose of a good distinguisher?

e a distinguisher can highlight whether an encryption scheme deviates from the
expected random behavior

« some subtle patterns that may go unnoticed otherwise can be captured by an
automated approach

« a good distinguisher is a prerequisite for a successful key recovery attack

Outline

» A Brief History

A Brief History

Lo BN

(] |

=J

. Aron Gohr proposed distinguisher for SPECK |ResNet]
. Zhang et al. proposed distinguisher for TweGIFT-128 |MLP]
. Wang et al. obtained distinguishers for SPECK32/6/ and PRESENT64/80

[Adaboost, DT, KNN, Logistic Regression, RFC, SVM, MLP, CNN, RNN, LSTM]

. Baksi et al. presented the notion of multiple input differences to define neural

distinguishers [MLP, CNN, LSTM]

. Mishra et al. proposed distinguisher for GIFT64 and PRIDE |[MLP, CNN]|
6.

Bacuieti et al. proposed using Convolutional Autoencoders as preprocessors before
training the model.

. Liu et al. obtained improved accuracy for SPECK [CNN]
8.
. Bellini et al. proposed a DBitNet network [CNN based]
10.

Deng et al. obtained improved results for SPECK |Attention+CNN]|

Shen et al. proposed a score distribution based technique [MLP]

Outline

» Deep Learning for Sequence Classification

Deep Learning for Sequence Classification

e MLP architectures — struggle to capture the spatial or temporal dependencies

Deep Learning for Sequence Classification

e MLP architectures — struggle to capture the spatial or temporal dependencies

i)

« (NN — can capture local patterns in data but fails to interpret long-range
dependencies

Deep Learning for Sequence Classification

e MLP architectures — struggle to capture the spatial or temporal dependencies

« (NN — can capture local patterns in data but fails to interpret long-range
dependencies

e the position of a data point, with respect to other data points carry some vital
dependencies

Deep Learning for Sequence Classification

MLP architectures — struggle to capture the spatial or temporal dependencies

C'NN — can capture local patterns in data but fails to interpret long-range
dependencies

the position of a data point, with respect to other data points carry some vital
dependencies

text classification, language translation, time-series applications and speech
recognition are examples of sequential data

Deep Learning for Sequence Classification

e MLP architectures — struggle to capture the spatial or temporal dependencies

i)

« (NN — can capture local patterns in data but fails to interpret long-range
dependencies

e the position of a data point, with respect to other data points carry some vital
dependencies

o text classification, language translation, time-series applications and speech
recognition are examples of sequential data

e in the present context: the ciphertexts can be considered a sequence of characters
encoded by ASCII (American Standard Code for Information Interchange)

Deep Learning for Sequence Classification

e MLP architectures — struggle to capture the spatial or temporal dependencies
« (NN — can capture local patterns in data but fails to interpret long-range
dependencies

e the position of a data point, with respect to other data points carry some vital
dependencies

o text classification, language translation, time-series applications and speech
recognition are examples of sequential data

e in the present context: the ciphertexts can be considered a sequence of characters
encoded by ASCII (American Standard Code for Information Interchange)

e.g., for a 64—bit blocksize cipher : [28, 121, 9, 250, 30, 66, 12, 97]

Sequence Detection Models

e Encoder-Decoder Network:
proposed in 2014, a team led by
Ilya Sutskever from Google

ENCODER

=—Awvr
== ttrr

i

-
-

(I

CONTEAT VECTOR

{Output Sequence)
Sequence Embeddings

h 1 Yy

HEBIANEE R NN NE

0O~ 0D

X, X; X
Sequence Embeddings
(Input Sequence)

—w
L

=
=

DECODER

m, n: length of the sequence

Sequence Detection Models

» Encoder-Decoder Network: o Transformer: published in 2017 by Google Brain
13'1"3‘13‘_359‘?1 in 2014, a team led by titled “Attention is all you need”
Ilya Sutskever from Google Output
Probabilities
[Softmax |

I

(Output Sequence) [Add & Norm |-
Sequence Embeddings E—
1 Yl Yu
:) — N
ENCODER .IJIII L EIJI — X
Add & Narm |
(I | e
L - L L L L Forward
CONTEAT VECTOR |
5 - 5 - " 5 5 —|--I 5 - - 5 N'C T
il 5% T il I T Add & Norm -
i M M M M M E e
Multi-Head
i i —1 — — Attention Mm :
= g) |
(D (D ~ (D DECODER [Qoo
X Ff; Xy g Encoding
Sequence Embeddings m, n: length of the sequence . ..?T{.'E.'i;‘..g
(Input Sequence) =
utputs

{shifted right)

Outline

» Neural Distinguishers based on Sequence Classification

The Neural Distinguisher Pipeline

1 1

1 |
o N MR X ey X >
Generate 2' 23 23 ;”'
r'l_.lE { xl, x'zg x31 = s o= o5 Xm :}
Dataset < X5 Xay XBi snay X >

(C1]1C2]IC, & C3)

The Ciphertext Sequences

The Neural Distinguisher Pipeline

< x! X1yl xl > (TT OO0 * I 14
Generate L o i
2 2 2 2
the < X%, X5, X5, , XE > HEEEREER |:|n| || L]
Dataset < Xy Xgs Xis vees Xm > m "|""i':|'|m!'i:|"

(C||C2]]Cy &b C3)

The Ciphertext Sequences The Embedding Vector Sequences

The Neural Distinguisher Pipeline

s 0 (0 070 ® (0T
Generate bS FE ST FIaRERE S | . |
2 2 L[]]] |] | ==] a Train, Validation

) 9
< Xy, X5 X S —

thE a o | :,r] and Testing
Dataset < j, X3, X3, -ooy X > (IO OID OO0 * (OID TS
(C |G]IC) @ Cy)

The Embedding Vector Sequences

The Ciphertext Sequences
The Deep Learning model

Data Generation

The Algorithm used for creating dataset:

Algorithm 1 Data Generation Algorithm: Differential Distinguisher
Input: Plaintext difference, d,»; number of encryption rounds, r: Dataset size, A’
Output: Dataset. D

I: D+«
2: fori=1toN do
3 K+ RANDOM _BYTES() = generating random kev. KC
4: Py — RANDOM _BYTES() > generating random plaintext. P
: Ci1 +— ENCRYPT(P1.K.1) = call the encryption oracle, returns cipherrext, ¢
o choice +— randorn_nwmber(0, 1)
7: if (choice = 0) then = random difference
§: Py +— RANDOM _BYTES()
G- Label + ()
10 else - real difference
11: Po=PF)Edop
12: Label — 1
13: end if

14: Co+— ENCRY PT(Pa. K. 1)

15: Cyop+—0C =0

16: D« DUC.Co.Cxpn. Label) i include in the dataset
17: end for

18: return D

Deep Learning Models

e LSTM-based Encoder Classifier (LbEC)

Deep Learning Models

e LSTM-based Encoder Classifier (LbEC)

rogrpary - d IE‘EEESJ?;”H
X] X? X3 Xn
| t

{xla x_Ea xs“'* xﬁl >

the ciphertext sequence

(GGG & C)

Deep Learning Models

e LSTM-based Encoder Classifier (LbEC)

ENCODER

LET A LETM LETM LETM

ol O] [O] [

Ol |O] |O]. |O

‘= ' iz iy

Ol O] O O

L 4 & 3

(oo rocrty - el Emhefing

X 1 XI X3 XH vector!

! t !

{ xl'! x:p x3 R | I" }

the ciphertext sequence

(CC]IC & C2)

Deep Learning Models

e LSTM-based Encoder Classifier (LbEC)

ENCODER
LET A LETM LETM LETM
O 19 O 9| oD
QO O] 1O O|| contexrvector
‘F 'z iz iy
Ol O] O O
4 & & I
ARER NN INERE NN Emh?ff:g
X | X 2 X 3 X p veetor

! t !

{ xl'! x:p x3 R | I" }

the ciphertext sequence

(CC]IC & C2)

Deep Learning Models

e LSTM-based Encoder Classifier (LbEC)

ENCODER

[
S0 Ol mmm A< R
O O O CONTEXT VECTOR ;//O_‘
O

104 OO0

- - - . 4 . predicted
i i3 ‘H class
& & []
(TINDOTINOm - OO Embedding Dense Lavers
YeChors
X X, X3 X n: sequence length
> 111 ,)1} ;3 1_1 S m: number of LSTM units
L] L¥ NS "n

I: number of dense layers
the ciphertext sequence

(C1C1]ICy & C7) d: number of dense units

Deep Learning Models

o Transformer based Encoder-only Classifier (TbEC)

Deep Learning Models

o Transformer based Encoder-only Classifier (TbEC)

Embedding Block

dime Token Embedding Position Embedding
i5.|5.‘iE !j!| + :'Iil:'il-“ (NN

l

| Embedding Layer | I Embedding Layer
Ll [] [[[i [¥

=Xl Xy X3y oeaep X > .
the ciphertext sequence {hul p; Zvees __E_} >
. text foken positions

(C1C1C, & Ca) Bk

Deep Learning Models

o Transformer based Encoder-only Classifier (TbEC)

Embedding Block

dime Token Embedding Position Embedding
|5:.|5.‘iE !j!| + :'Iil:'il-“ (NN

l

| Embedding Layer | I Embedding Layer
Ll [[[[i [¥
" pecabmetgeme. | Sh 5 B =)
) the ciphertext token positions
(CHICIC @& Ca)
Token and Position
Embedding Ve
In [ID - @m
n_gitn
: 4
HAME 3 sl 4 |3
5 - g -t . el - -
| |&] @ 3 g %
E 5w 3 S £
:: § N - i Dense layer Black ;

Transformer Block

Deep Learning Models

o Transformer based Encoder-only Classifier (TbEC)

Embedding Block
dime Token Embedding Position Embedding n: sequence length
DO - D + =.I.I =.il SRREERUNN dim_e: embedding dimension
_ [n_attn; number of aitention heads
d: number of dense layer units
| Embedding Layer | I Embedding Layer _ f yﬂ :
— 3 I — 5 d_units: number of units in dense layer of
& e e T transformer block
I= AT Fr rrrn An E
the ciphertext sequence {hul p; Z mke (e __ I_} >
3 the ciphertext i} ItIoRs
(CHICC & Cr) Fos
Token and Position
Embedding Ve
(D I - @m =
f = S
n_gitn E E: O
TN 1HEL 5] O
z = & £ |8 2 | uw s P
£ a E 3 ' | 2 8 E E‘ ~ \
= - -t . E ---g e --E o ™ ':'_'t -—-O—o R prf'd[f.'ﬂ:'d
3 §L F:' = B |= = =, class
= ¢ =4 & = = L X 2
= 3 i |3 E) 4 sigmoid
M - L nse layer Black L E

Transformer Block Dense Layer

Searching the Distinguisher

The Algorithm used for Searching the Distinguisher

Algorithm 2 Distinguisher Search

Input: Dataset, D

Qutput: Distinguisher found/ not found
I: Dirain: Poals Dicst &+ SPLIT _DATASET(D) © split the dataset, D into train, validation & test sets
2 model +— DEFINE MODEL() = calls the function definition of the model

3 Accuracy(ipainy — TRAIN (model. Dirain, Dyal) & train the model on Dyygin & D,
4 if Accuracy(yainy > 50% then

5: Accuracyesyy + TEST (model. Dyest) & test the model on Dy, o
6: if Accuracy sy > 50% then

return “Distinguisher Found™

8: else

: return “Distinguisher Not Found™
10: end if
11: else
12: return *Distinguisher Not Found™

13: end if

Outline

» Results and Observation

Brief Overview of the Ciphers

HIGHT

ARX based,
Generalized
Fiestel
Structure
block size
— 64 bits
key size

— 128 hits

number of
rounds — 32

PRESENT

SPN based

block size
— 64 bits

key size — 80
bits

number of
rounds — 31

LE Ak
ARX-based

block size
— 128 bits
key size

— 128 bits

number of
rounds — 24

SPARX
ARX based

block size
— 64 bits
key size

— 128 bits

number of
rounds — 24

Piceolo-80

GEN based

block size

— 64 bits
key size — 80
bits

number of
rounds — 25

Obtained Results

HIGHT
LOEC — 16
rounds
distinguisher
(Accuracy

= 50.02%)

TOEC — 11
rounds
distinguisher
(Accuracy

= 50.18%)

PRESENT

LObEC — 12
rounds

distinguisher

(Accuracy
= 50.14%)

THEC — 12
rounds

distinguisher

(Accuracy
= 50.01%)

LEA
LObEC — 11
rounds
distinguisher
(Accuracy
= 50.15%)

TOEC — 13
rounds
distinguisher
(Accuracy

= 50.12%)

SPARX
LbEC — 6

rounds
distinguisher
(Accuracy

= 50.62%)

TOEC — 6
rounds
distinguisher
(Accuracy

= 50.18%)

Piccolo-80

LOEC — 6
rounds
distinguisher
(Accuracy

TbEC — 9
rounds
distinguisher
(Accuracy

= 50.05%)

Comparisons of the Result

Block coplier “Muodel Architecture | Rounds | Test Accurcy
LOBM® i) 001
CNNT (1] 3. 30
T LSTM?® 5 O 30
HIGHT BEGNaGT [- T5. 10
LbEC 16 | Sn029:
ThEC i S 187
O Barsasd® 7 T2.05%
R — DEiNer?] SO
TREIENT LhEC 12 ENFER
ThiEC 12 S0
LOBM® 0 0. 18%
s [A0.457
TETM? £ S0.RT

e DB Nei® 1 ST 0%

LhEC 11 | 554
ThEC 13 EN L
LOGBM® A 0,645
CNNT 5 0,387
SPARX LSTM?] S0.45%
LhEC M B
“ThEC 3 S 187
! - LhiEd [S8
ieenio#0 THEC 9 0057

[1] D. Pal, U. Mandal, M. Chaudhury, A. Das. and D. R. Chowdhury, “A deep neural differential distinguisher for ARX based block
cipher.” Cryptology ePrint Archive, Paper 2022/1195, 2022,

2] E. Bellini. D. G erault. A. Hambitzer. and M. Roszi. “A cipher-agnostic neural training pipeline with automated finding of good
input differences," TACH Trans. Symmetric Cryptol., val. 2023, no. 3, pp. 184-212 2023,

(3] L. Zhang and Z. Wang, “Improving differential-neural distinguisher model for des, chaskey, and present,” 2022,

Outline

» Conclusion

Conclusion

o the problem of building differential distinguishers aided by deep learning is observed
from a unique standpoint

« embedding vectors have represented the sequence tokens

o the embedding vectors representing the ciphertext sequences have been used for the
classification tasks

o one hot encoding — LbEC

o the model learns the embedding vectors during the training phase— THEC

» this is a generalized approach — the approach is clearly not specific to any particular
design

o future scope — further improvements and extension of the method to other ciphers

e perform a key recovery with the help of the proposed distinguishers

THANK YOU

