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e Conventional Method —
relies on Difference Distribution Table (DDT)

e New Research Direction — utilize deep learning model
to get a distinguisher [Aron Gohr|
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What is the purpose of a good distinguisher?

e a distinguisher can highlight whether an encryption scheme deviates from the
expected random behavior

« some subtle patterns that may go unnoticed otherwise can be captured by an
automated approach

« a good distinguisher is a prerequisite for a successful key recovery attack
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. Aron Gohr proposed distinguisher for SPECK |ResNet]
. Zhang et al. proposed distinguisher for TweGIFT-128 |MLP]
. Wang et al. obtained distinguishers for SPECK32/6/ and PRESENT64/80

[Adaboost, DT, KNN, Logistic Regression, RFC, SVM, MLP, CNN, RNN, LSTM]

. Baksi et al. presented the notion of multiple input differences to define neural

distinguishers [MLP, CNN, LSTM]

. Mishra et al. proposed distinguisher for GIFT64 and PRIDE |[MLP, CNN]|
6.

Bacuieti et al. proposed using Convolutional Autoencoders as preprocessors before
training the model.

. Liu et al. obtained improved accuracy for SPECK [CNN]
8.
. Bellini et al. proposed a DBitNet network [CNN based]
10.

Deng et al. obtained improved results for SPECK |Attention+CNN]|

Shen et al. proposed a score distribution based technique [MLP]
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e MLP architectures — struggle to capture the spatial or temporal dependencies
« (NN — can capture local patterns in data but fails to interpret long-range
dependencies

e the position of a data point, with respect to other data points carry some vital
dependencies

o text classification, language translation, time-series applications and speech
recognition are examples of sequential data

e in the present context: the ciphertexts can be considered a sequence of characters
encoded by ASCII (American Standard Code for Information Interchange)

e.g., for a 64—bit blocksize cipher : [28, 121, 9, 250, 30, 66, 12, 97]



Sequence Detection Models

e Encoder-Decoder Network:
proposed in 2014, a team led by
Ilya Sutskever from Google
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Sequence Detection Models

» Encoder-Decoder Network: o Transformer: published in 2017 by Google Brain
13'1"3‘13‘_359‘?1 in 2014, a team led by titled “Attention is all you need”
Ilya Sutskever from Google Output
Probabilities
[ Softmax |

I

(Output Sequence) [ Add & Norm |-
Sequence Embeddings E—
1 Yl Yu
: ) — N
ENCODER .IJIII L EIJI — X
Add & Narm |
(I | e
L - L L L L Forward
CONTEAT VECTOR |
5 - 5 - " 5 5 —|--I 5 - - 5 N'C T
il 5% T il I T Add & Norm -
i M M M M M E e
Multi-Head
i i —1 — — Attention Mm :
= g ) |
(D (D ~ (D DECODER [ Qoo
X Ff; Xy g Encoding
Sequence Embeddings m, n: length of the sequence . ..?T{.'E.'i;‘..g
(Input Sequence) =
utputs

{shifted right)



Outline

» Neural Distinguishers based on Sequence Classification



The Neural Distinguisher Pipeline

1 1

1 |
o N MR X ey X >
Generate 2' 23 23 ;”'
_r_'l_.lE { xl, x'zg x31 = s o= o5 Xm :}
Dataset < X5 Xay XBi snay X >

(C1]1C2]IC, & C3)

The Ciphertext Sequences



The Neural Distinguisher Pipeline

< x! X1yl xl > (TT OO0 * I 14
Generate L o i
2 2 2 2
the < X%, X5, X5, , XE > HEEEREER |:|n| || L]
Dataset < Xy Xgs Xis vees Xm > m "|""i':|'|m!'i:|"

(C||C2]]Cy &b C3)

The Ciphertext Sequences The Embedding Vector Sequences



The Neural Distinguisher Pipeline
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Data Generation

The Algorithm used for creating dataset:

Algorithm 1 Data Generation Algorithm: Differential Distinguisher
Input: Plaintext difference, d,»; number of encryption rounds, r: Dataset size, A’
Output: Dataset. D

I: D+«
2: fori=1toN do
3 K+ RANDOM _BYTES() = generating random kev. KC
4: Py — RANDOM _BYTES() > generating random plaintext. P
: Ci1 +— ENCRYPT(P1.K.1) = call the encryption oracle, returns cipherrext, ¢
o choice +— randorn_nwmber(0, 1)
7: if (choice = 0) then = random difference
§: Py +— RANDOM _BYTES()
G- Label + ()
10 else - real difference
11: Po=PF)Edop
12: Label — 1
13: end if

14: Co+— ENCRY PT(Pa. K. 1)

15: Cyop+—0C =0

16: D« DUC.Co.Cxpn. Label) i include in the dataset
17: end for

18: return D
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e LSTM-based Encoder Classifier (LbEC)
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e LSTM-based Encoder Classifier (LbEC)

ENCODER

LET A LETM LETM LETM

ol O] [O] [

Ol |O] |O]. |O

‘= ' iz iy

Ol O] O O

L 4 & 3

(oo rocrty - el Emhefing

X 1 XI X3 XH vector!

! t !

{ xl'! x:p x3 R | I" }

the ciphertext sequence

(CC]IC & C2)



Deep Learning Models

e LSTM-based Encoder Classifier (LbEC)
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Deep Learning Models

e LSTM-based Encoder Classifier (LbEC)
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o Transformer based Encoder-only Classifier (TbEC)
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Deep Learning Models

o Transformer based Encoder-only Classifier (TbEC)
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Searching the Distinguisher

The Algorithm used for Searching the Distinguisher

Algorithm 2 Distinguisher Search

Input: Dataset, D

Qutput: Distinguisher found/ not found
I: Dirain: Poals Dicst &+ SPLIT _DATASET(D) © split the dataset, D into train, validation & test sets
2 model +— DEFINE MODEL() = calls the function definition of the model

3 Accuracy(ipainy — TRAIN (model. Dirain, Dyal) & train the model on Dyygin & D,
4 if Accuracy(yainy > 50% then

5: Accuracyesyy + TEST (model. Dyest) & test the model on Dy, o
6: if Accuracy sy > 50% then

return “Distinguisher Found™

8: else

: return “Distinguisher Not Found™
10: end if
11: else
12: return *Distinguisher Not Found™

13: end if
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Brief Overview of the Ciphers
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Obtained Results
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Comparisons of the Result
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Conclusion

o the problem of building differential distinguishers aided by deep learning is observed
from a unique standpoint

« embedding vectors have represented the sequence tokens

o the embedding vectors representing the ciphertext sequences have been used for the
classification tasks

o one hot encoding — LbEC

o the model learns the embedding vectors during the training phase— THEC

» this is a generalized approach — the approach is clearly not specific to any particular
design

o future scope — further improvements and extension of the method to other ciphers

e perform a key recovery with the help of the proposed distinguishers
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